求一个齐次线性方程组AX=0,使得向量组n1=(1,2,3,4)∧T,n2=(4,3,2,1)∧T是它的一个基础解系
求一个齐次线性方程组AX=0,使得向量组n1=(1,2,3,4)∧T,n2=(4,3,2,1)∧T是它的一个基础解系
设3元线性方程组AX=b,A的秩为2,n1,n2,n3为方程组的解,n1+n2=(2,4,0)^T,n1+n3=(1,-
设四元非齐次线性方程组的系数矩阵的秩为3,n1=(2,3,4,5)T,n2=(1,2,3,4)T都是它的解向量,求该方程
已知n1,n2,n3为齐次线性方程组AX=0的基础解系
设A为4×3的矩阵且秩为2,向量n1=(1 0 1)T,n2=(2 1 3)T是方程组Ax=B的两个解,求方程组Ax=B
设X0是非齐次线性方程组AX=b的一个解向量,α1,α2,…αn-r是对应齐次线性方程组AX=0的一个基础解系,试证
一个线性代数的问题已知n*n阶矩阵A,和n*1阶列向量X.若齐次数线性方程组AX=0的基础解系为N1,N2……Nk,且n
已知n1,n2是Ax=b(b不等于0)的两个不同解,α1,α2是齐次线性方程组Ax=0的基础解系,求非齐次线性方程组Ax
已知向量组α1,α2,α3是齐次线性方程组AX=0的一个基础解系
Ax=b有解n1,n2,n3,n1+n2=(4,2,3)T,n2+n3=(5,7,-3)T,Ax=b的特解是什么?答案是
求一个齐次线性方程组,使它的基础解系为a1=(1,1,0,0,0)T a2=(-2,0,1,0,9)T a3=(1,0,
A是m*n矩阵,η1……ηt是齐次方程组Ax=0的基础解系,a是非齐次线性方程组Ax=b的一个解,证明方程组 Ax=b