作业帮 > 数学 > 作业

求韦达定理的证明方法!

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/06 07:35:55
求韦达定理的证明方法!
就2次的韦达定理.
我了解到两种,一是用求根公式证明..二是把ax^2+bx+c=0 两边同除a,然后再用(x-x1)(x-x2)=0 展开,然后二式对比出来.
我相信肯定还有很多方法的~希望各位数学帝提供更多证明的方法~
求韦达定理的证明方法!
令方程的两根分别是x1、x2.显然有:
ax1^2+bx1+c=0、ax2^2+bx2+c=0.两式相减,得:
a(x1^2-x2^2)+b(x1-x2)=0,∴a(x1-x2)(x1+x2)+b(x1-x2)=0,
∴(x1-x2)[a(x1+x2)+b]=0.
很明显,x1、x2不一定相等,∴需要:a(x1+x2)+b=0,得:x1+x2=-b/a.
由ax1^2+bx1+c=0、ax2^2+bx2+c=0相加,得:
a(x1^2+x2^2)+b(x1+x2)+2c=0,
∴a[(x1+x2)^2-2x1x2]+b(x1+x2)+2c=0,
∴a[(-b/a)^2-2x1x2]+b(-b/a)+2c=0,
∴b^2/a-2ax1x2-b^2/a+2c=0,∴ax1x2=c,∴x1x2=c/a.
∴若一元二次方程ax^2+bx+c=0的两根为x1、x2,则:x1+x2=-b/a、x1x2=c/a.