有关圆幂定理的难题已知点P是⊙O外一点,PS、PT是⊙O的两条切线,过点P作⊙O的割线PAB,交⊙O于A、B两点,与ST
如图,已知点P是⊙O外一点,PS,PT是⊙O的两条切线,过点P作⊙O的割线PAB,交⊙O于A、B两点,并交ST于点C.
如图,AC是⊙O的直径,∠ACB=60°,连接AB,过A、B两点分别作⊙O的切线,两切线交于点P.若已知⊙O的半径为1,
在圆O外一点P,过P作圆的切线交圆于A点,过P作圆的割线交圆于B,C两点(PB
如图,圆O是△ABC的外接圆,过A,B两点分别作⊙O的切线PA,PB交于一点P,连接OP
p是圆o外一点,过p做圆o的切线pt,t为切点,过p做圆o的割线pcd交圆o于c,d,过c作pt的平行线交圆o于b,pb
1.如图,过⊙O外一点P作两条割线,分别交⊙O于A,B和C,D,再作⊙O的切线PE,E为切点,连结CE,DE,已知AB=
如图所示,已知⊙O1与⊙O2相交于A、B两点,过点A作⊙O1的切线交⊙O2于点C,过点B作两圆的割线,分别交⊙O1、⊙O
已知⊙O的割线PAB交⊙O于A.B两点,PO与⊙O交于点C,且PA=AB=6cm,PO=12cm,(1)⊙O半径(2)△
如图,点p是圆o外一点,过点p作圆o的切线,切点为4,连接po并延长,交圆o 于B,C两点.
如图,已知OA、OB是⊙O的半径,且OA⊥OB,P是线段OA上一点,直线BP交⊙O于点Q,过Q作⊙O的切线交直线OA于点
如图,已知P为⊙O外一点,以PO为直径作⊙M,⊙M交⊙O于A、B两点,求证:PA、PB是⊙O的切线.
如图,过圆O外一点P作圆O的两条切线PA、PB,A、B为切点,BD⊥PA于点D,AE⊥PB于点E,AE、BD交于点H 求