几道数学题,关于一元二次方程.本问题只存在2小时,
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 10:28:48
几道数学题,关于一元二次方程.本问题只存在2小时,
1、已知方程a²x²-(3a²-8a)x+2a²-13a+15=0(其中a为非负数)至少有一个整数根,求a的值
2、求出所有这样的正整数a,使得二次方程ax²+2(2a-1)x+4(a-3)=0至少有一个整数根
3、若有两个方程x²+ax+b=0和x²+bx+a=0只有一个公共根,求出这个公共根及a与b的关系
1、已知方程a²x²-(3a²-8a)x+2a²-13a+15=0(其中a为非负数)至少有一个整数根,求a的值
2、求出所有这样的正整数a,使得二次方程ax²+2(2a-1)x+4(a-3)=0至少有一个整数根
3、若有两个方程x²+ax+b=0和x²+bx+a=0只有一个公共根,求出这个公共根及a与b的关系
1.
△=(3a²-8a)^2-4a²(2a²-13a+15)=a^4+4a^3+4a^2=[a(a+2)]^2>=0,
x=[(3a^2-8a)+或-a(a+2)]/(2a^2)=2-3/a或1-5/a.
依题意,a是3或5的因子,
则 a=1或3或5.
2.
x=-2+[1+或-sqrt(8a+1)]/a.
依题意,8a+1是完全平方数且[1+或-sqrt(8a+1)]是a的倍数.
于是,a=1或3或6或10.
3.
联立两个方程得 (a-b)x+b-a=0.
依题意,x=1,且a与b不相等.
△=(3a²-8a)^2-4a²(2a²-13a+15)=a^4+4a^3+4a^2=[a(a+2)]^2>=0,
x=[(3a^2-8a)+或-a(a+2)]/(2a^2)=2-3/a或1-5/a.
依题意,a是3或5的因子,
则 a=1或3或5.
2.
x=-2+[1+或-sqrt(8a+1)]/a.
依题意,8a+1是完全平方数且[1+或-sqrt(8a+1)]是a的倍数.
于是,a=1或3或6或10.
3.
联立两个方程得 (a-b)x+b-a=0.
依题意,x=1,且a与b不相等.