随机变量X1,X2,……Xn独立同分布,方差为σ^2,Y=1/nΣ(1~n)Xi,则D(X1-Y)=
设随机变量X1,X2,…Xn(n>1)独立同分布,方差λ^2>0,令Y=(1/n)∑(i=1~n)Xi,则( )
设随机变量X1,X2,…,Xn(n>1)d独立同分布,且其方差为a^2>0,令Y=1/nEX1,则
设随机变量序列X1,X2,...Xn独立同分布,且E(Xi)=μ,D(Xi)=σ^2,i=1,2,...,则对任意实数x
设X1,X2...Xn 独立同分布的随机变量,证明X=(1/n)* ∑Xi 和∑(Xi-X)^2 相互独立.
设随机变量X1,X2,...Xn独立同分布,且E(Xi)=μ,D(Xi)=σ^2,i=1,2,...,设x=1/n∑xp
设随机变量X1,X2...Xn相互独立同分布,服从B(1,p),则E(Xk∑Xi)=?其中Xk为X1,X2...Xn中的
已知随机变量X1,X2……Xn相互独立,且每个Xi的期望都是0,方差都是1,令Y=X1+X2+……+Xn,求E(Y^2)
概率论,已知随机变量X1,X2,X3,…Xn(n>1)相互独立且同分布
设X1,X2...为独立同分布随机变量序列,Xn的分布列为P(Xn=0)=P(Xn=2)=0.5,n>=1 .随机变量X
设X1,X2...Xn是独立同分布的正值随机变量.证明E[(X1+...+Xk)/(X1+...Xn)]=k/n,k≤n
求解一道概率题设随机变量X1,X2,…,Xn相互独立,D(Xi)=δi^2,δi不等于0,i=1,2…,n.又∑(i从1
设X~ε(λ),X1,X2,……是来自总体X的随机变量,和总体X独立的随机变量N服从均值为1/P的几何分布,求Y=(X1