求解一道概率题设随机变量X1,X2,…,Xn相互独立,D(Xi)=δi^2,δi不等于0,i=1,2…,n.又∑(i从1
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 00:11:04
求解一道概率题
设随机变量X1,X2,…,Xn相互独立,D(Xi)=δi^2,δi不等于0,i=1,2…,n.又∑(i从1到n)ai=1,求ai(i=1,2…,n),使∑(i从1到n)aiXi的方差最小.
答案提示用构造拉格朗日函数L=∑(i从1到n)(aiδi)^2+λ(∑(i从1到n)ai-1)=0;
∑(i从1到n)ai=1.然而不会解离散型变量的拉格朗日的这个方程..
设随机变量X1,X2,…,Xn相互独立,D(Xi)=δi^2,δi不等于0,i=1,2…,n.又∑(i从1到n)ai=1,求ai(i=1,2…,n),使∑(i从1到n)aiXi的方差最小.
答案提示用构造拉格朗日函数L=∑(i从1到n)(aiδi)^2+λ(∑(i从1到n)ai-1)=0;
∑(i从1到n)ai=1.然而不会解离散型变量的拉格朗日的这个方程..
因为X1,X2,…,Xn相互独立,所以
D(∑(i从1到n)aiXi) = ∑(i从1到n)D(aiXi) = ∑(i从1到n)ai^2 D(Xi) = ∑(i从1到n)ai^2 δi^2
设 L(a1,...,an,λ) = ∑(i从1到n)(aiδi)^2+λ(∑(i从1到n)ai-1),
当给定 a1,...,a(i-1),a(i+1),...,an,λ时,L是ai的二次函数,且开口向上.
于是在最小值处,有:
下面用 dL/dai 表示偏导数.
dL/dai = 2ai δi^2 + λ = 0 ,i = 1,...,n
==> -λ/2 = a1 δ1^2 = a1/(1/ δ1^2) = .= an/(1/ δn^2)
= (a1 + .+an)/((1/ δ1^2) + ...+(1/ δn^2))
= 1/ ((1/ δ1^2) + ...+(1/ δn^2))
==>
ai = -λ / (2δi^2) = 1/δi^2 * (-λ/2)= 1/δi^2 / ((1/ δ1^2) + ...+(1/ δn^2)) ,i = 1,2,...,n
当 ai ,i=1,...,n,为上值时,方差最小.
D(∑(i从1到n)aiXi) = ∑(i从1到n)D(aiXi) = ∑(i从1到n)ai^2 D(Xi) = ∑(i从1到n)ai^2 δi^2
设 L(a1,...,an,λ) = ∑(i从1到n)(aiδi)^2+λ(∑(i从1到n)ai-1),
当给定 a1,...,a(i-1),a(i+1),...,an,λ时,L是ai的二次函数,且开口向上.
于是在最小值处,有:
下面用 dL/dai 表示偏导数.
dL/dai = 2ai δi^2 + λ = 0 ,i = 1,...,n
==> -λ/2 = a1 δ1^2 = a1/(1/ δ1^2) = .= an/(1/ δn^2)
= (a1 + .+an)/((1/ δ1^2) + ...+(1/ δn^2))
= 1/ ((1/ δ1^2) + ...+(1/ δn^2))
==>
ai = -λ / (2δi^2) = 1/δi^2 * (-λ/2)= 1/δi^2 / ((1/ δ1^2) + ...+(1/ δn^2)) ,i = 1,2,...,n
当 ai ,i=1,...,n,为上值时,方差最小.
求解一道概率题设随机变量X1,X2,…,Xn相互独立,D(Xi)=δi^2,δi不等于0,i=1,2…,n.又∑(i从1
设随机变量X1,X2,…Xn(n>1)独立同分布,方差λ^2>0,令Y=(1/n)∑(i=1~n)Xi,则( )
设X1,X2……Xn相互独立,且Xi~N(μ,θ^2),i=1,2,3……n.T=1/n∑i=1 到n Xi^2,则E
设随机变量序列X1,X2,...Xn独立同分布,且E(Xi)=μ,D(Xi)=σ^2,i=1,2,...,则对任意实数x
设X1,X2,...,Xn,...相互独立,且都服从P(λ),那么1/n∑Xi依概率收敛到?i从1到n
设随机变量X1,X2,...Xn独立同分布,且E(Xi)=μ,D(Xi)=σ^2,i=1,2,...,设x=1/n∑xp
设X1,X2...Xn 独立同分布的随机变量,证明X=(1/n)* ∑Xi 和∑(Xi-X)^2 相互独立.
一道概率题设随机变量X1,X2,...Xn相互独立,且都服从(0,1)上的均匀分布.求U=max{X1,X2...Xn}
设xi∈R+(i=1,2,n),求证:x1^x1x2^x2,xn^xn≥(x1x2,xn)^1/n(x1+x2+,+xn
设随机变量X1,X2...Xn相互独立同分布,服从B(1,p),则E(Xk∑Xi)=?其中Xk为X1,X2...Xn中的
设x1,x2,……,xn是整数,-1≤xi≤2(i=1,2,……,n)
用数学归纳法证明:xi>0 ,i=1,2,3…n若x1x2…xn=1,则x1+x2+…xn≥n