离心率e=根6/3的椭圆E的中心在原点O,焦点在x轴上,过点C(-1,0)的斜率为k的直线l交椭圆于AB,
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 04:01:08
离心率e=根6/3的椭圆E的中心在原点O,焦点在x轴上,过点C(-1,0)的斜率为k的直线l交椭圆于AB,
且满足BA=(1+p)BC(p>=3)
固定p,当S(OAB)取得最大值时,求E的方程.
且满足BA=(1+p)BC(p>=3)
固定p,当S(OAB)取得最大值时,求E的方程.
离心率e=√6/3的椭圆E的中心在原点O,焦点在x轴上,过点C(-1,0)的斜率为k的直线l交椭圆于AB,且满足BA=(1+p)BC(p>=3)
固定p,当S(OAB)取得最大值时,求E的方程
过点A(0,-b),B(a,0)的直线距离为√3/2,
即:a^2+b^2=(根号3/2)^2=3/4
又e=c/a=根号6/3,c^2=2/3a^2
c^2=a^2-b^2
2/3a^2=a^2-b^2
b^2=a^2/3
解得:a^2=9/16,b^2=3/16
方程是:x^2/(9/16)+y^2/(3/16)=1.(设焦点在X轴上.)
或:y^2/(9/16)+x^2/(3/16)=1.(焦点在Y轴上)
固定p,当S(OAB)取得最大值时,求E的方程
过点A(0,-b),B(a,0)的直线距离为√3/2,
即:a^2+b^2=(根号3/2)^2=3/4
又e=c/a=根号6/3,c^2=2/3a^2
c^2=a^2-b^2
2/3a^2=a^2-b^2
b^2=a^2/3
解得:a^2=9/16,b^2=3/16
方程是:x^2/(9/16)+y^2/(3/16)=1.(设焦点在X轴上.)
或:y^2/(9/16)+x^2/(3/16)=1.(焦点在Y轴上)
已知椭圆C的中心在坐标原点,左顶点A(-2,0),离心率e=1/2,F为右焦点,斜率K的直线过点F,交椭圆C于P.O两点
第六题:已知椭圆C的中心在坐标原点,左顶点A(-2,0),离心率e=1/2,F为右焦点,斜率K的直线过点F,交椭圆C于P
已知椭圆E中心在原点O,焦点在X轴上,其离心率e=根号(2/3),过C(-1,0)的直线L与椭圆E相交于A,B两点,且满
设椭圆的中心在坐标原点o,焦点在x轴上,离心率e=根号2/2,过椭圆外一点m(0,2)作直线l交椭圆与A,B两点
已知椭圆的中心在原点,焦点在x轴上,过他的右焦点作斜率为1的直线l交椭圆于A、B两点,若椭圆上存在一点C,使OA向量加O
已知椭圆的中心在原点,焦点在x轴上,离心率e=根号3/2且过点(2,2根号2)求该椭圆的标准方程,设不过原点O的直线L与
数学题椭圆方程的题椭圆中心为原点O,焦点在x轴上,离心率e=根号2\2,直线y=x=1交椭圆于A、B两点,且△AOB的面
已知椭圆C的对称中心为原点O,焦点在X轴上,离心率1/2为,且点(1.3/2)在该椭圆上.求过椭圆左焦点F的直线L
椭圆中心为原点o,焦点在x轴上,离心率e=根号2/2,直线y=x+1交椭圆于A,B两点,且三角形AOB的面积=2/3,
椭圆中心为原点O,焦点在x轴上,离心率e=√2/2,直线y=x+1交椭圆于A,B两点,且△AOB的面积等于2/3
椭圆C的中心为坐标原点O,焦点在y轴上,离心率e=根号2/2,椭圆上的点到焦点的最短距离为1-e,直线l与y轴交于P点(
【椭圆直线】椭圆的中心在原点,焦点在X轴上,过右焦点F作斜率为1的直线交椭圆于A,B.若椭圆是存在点C,是%...