作业帮 > 数学 > 作业

如图所示,在△ABC中,AD是BC边上的中线,M是AD上的一点,AM=2DM,AM=3,BM=4,CM=5

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 11:06:39
如图所示,在△ABC中,AD是BC边上的中线,M是AD上的一点,AM=2DM,AM=3,BM=4,CM=5
求△ABC的面积.
如图所示,在△ABC中,AD是BC边上的中线,M是AD上的一点,AM=2DM,AM=3,BM=4,CM=5
在AD的延长线上取点E,使DE=DM,连接CE
∵AD是BC边上的中线
∴BD=CD
∵∠ADB=∠EDC,DE=DM
∴△BDM≌△CDE (SAS)
∴CE=BM=4,∠BME=∠E
∵ME=DM+DE=2DM,AM=2DM
∴ME=AM=3
∵CM=5
∴CM²=ME²+CE²
∴∠E=90
∴∠BME=90
∵AD=AM+DM=AM+AM/2=3+3/2=9/2
∴S△ABD=BM×AD/2=4×(9/2)/2=9
S△ACD=CE×AD/2=5×(9/2)/2=45/4
∴S△ABC=S△ABD+ S△ACD=9+45/4=81/4


数学辅导团解答了你的提问,理解请及时采纳为最佳答案.