如图,在直角坐标系中,O为原点.点A在x轴的正半轴上,点B在y轴的正半轴上,tan∠OAB=2.二次函数y=x2+mx+
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 12:31:43
如图,在直角坐标系中,O为原点.点A在x轴的正半轴上,点B在y轴的正半轴上,tan∠OAB=2.二次函数y=x2+mx+2的图象经过点A,B,顶点为D.
(1)求这个二次函数的解析式;
(2)将△OAB绕点A顺时针旋转90°后,点B落到点C的位置.将上述二次函数图象沿y轴向上或向下平移后经过点C.请直接写出点C的坐标和平移后所得图象的函数解析式;
(3)设(2)中平移后所得二次函数图象与y轴的交点为B1,顶点为D1.点P在平移后的二次函数图象上,且满足△PBB1的面积是△PDD1面积的2倍,求点P的坐标.
(1)求这个二次函数的解析式;
(2)将△OAB绕点A顺时针旋转90°后,点B落到点C的位置.将上述二次函数图象沿y轴向上或向下平移后经过点C.请直接写出点C的坐标和平移后所得图象的函数解析式;
(3)设(2)中平移后所得二次函数图象与y轴的交点为B1,顶点为D1.点P在平移后的二次函数图象上,且满足△PBB1的面积是△PDD1面积的2倍,求点P的坐标.
(1)由题意,点B的坐标为(0,2),
∴OB=2,
∵tan∠OAB=2,即
OB
OA=2.
∴OA=1.
∴点A的坐标为(1,0).
又∵二次函数y=x2+mx+2的图象过点A,
∴0=12+m+2.
解得m=-3,
∴所求二次函数的解析式为y=x2-3x+2.
(2)作CE⊥x轴于E,
由于∠BAC=90°,可知∠CAE=∠OBA,△CAE≌△OBA,
可得CE=OA=1,AE=OB=2,可得点C的坐标为(3,1).
由于沿y轴运动,故图象开口大小、对称轴均不变,
设出解析式为y=x2-3x+c,代入C点作标得1=9-9+c,c=1,
所求二次函数解析式为y=x2-3x+1.
(3)由(2),经过平移后所得图象是原二次函数图象向下平移1个单位后所得的图象,
那么对称轴直线x=
3
2不变,且BB1=DD1=1.
∵点P在平移后所得二次函数图象上,
设点P的坐标为(x,x2-3x+1).
在△PBB1和△PDD1中,∵S△PBB1=2S△PDD1,
∴边BB1上的高是边DD1上的高的2倍.
①当点P在对称轴的右侧时,x=2(x-
3
2),得x=3,
∴点P的坐标为(3,1);
②当点P在对称轴的左侧,同时在y轴的右侧时,x=2(
3
2-x),得x=1,
∴点P的坐标为(1,-1);
③当点P在y轴的左侧时,x<0,又-x=2(
3
2-x),
得x=3>0(舍去),
∴所求点P的坐标为(3,1)或(1,-1).
∴OB=2,
∵tan∠OAB=2,即
OB
OA=2.
∴OA=1.
∴点A的坐标为(1,0).
又∵二次函数y=x2+mx+2的图象过点A,
∴0=12+m+2.
解得m=-3,
∴所求二次函数的解析式为y=x2-3x+2.
(2)作CE⊥x轴于E,
由于∠BAC=90°,可知∠CAE=∠OBA,△CAE≌△OBA,
可得CE=OA=1,AE=OB=2,可得点C的坐标为(3,1).
由于沿y轴运动,故图象开口大小、对称轴均不变,
设出解析式为y=x2-3x+c,代入C点作标得1=9-9+c,c=1,
所求二次函数解析式为y=x2-3x+1.
(3)由(2),经过平移后所得图象是原二次函数图象向下平移1个单位后所得的图象,
那么对称轴直线x=
3
2不变,且BB1=DD1=1.
∵点P在平移后所得二次函数图象上,
设点P的坐标为(x,x2-3x+1).
在△PBB1和△PDD1中,∵S△PBB1=2S△PDD1,
∴边BB1上的高是边DD1上的高的2倍.
①当点P在对称轴的右侧时,x=2(x-
3
2),得x=3,
∴点P的坐标为(3,1);
②当点P在对称轴的左侧,同时在y轴的右侧时,x=2(
3
2-x),得x=1,
∴点P的坐标为(1,-1);
③当点P在y轴的左侧时,x<0,又-x=2(
3
2-x),
得x=3>0(舍去),
∴所求点P的坐标为(3,1)或(1,-1).
如图,在直角坐标系中,O为原点,点A在x轴的正半轴上,点B在y轴的正半轴上,tan∠OAB=2,二次函数y=x 2 +m
如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3
如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0)
如图,在直角坐标系中,O为原点,点A在y轴的正半轴上,∠OAB = 90°,B(-5,12),将△A
在平面直角坐标系中,O为坐标原点,二次函数y=x^2+bx+c的图象与x轴相交于A,B两点,与y轴的负半轴交于点C(如图
如图,在平面直角坐标系中,O为坐标原点.二次函数y=-x2+bx+3的图象经过点A(-1,0),顶点为B.
在平面直角坐标系中,O为坐标原点,二次函数Y=-X^2+bX+3的点经过点A(-1,0),定点为b
如图1,在直角坐标系中,O是坐标原点,点A在y轴正半轴上,二次函数y=ax 2 + x +c的图象F交x轴于B、C两点,
如图,在平面直角坐标系中,二次函数y=x2+bx+c的图像与x轴交于A、B两点,点A在原点的左侧,点B的坐标
如图,在直角坐标系中,二次函数y=x^2+bx+c的图像与x轴交于A、B两点,A点在原点的左侧,B点的坐标为(3,0),
如图在直角坐标系中,O为原点,抛物线y=X^+bx+3与x轴的负半轴交于点A,与y轴的正半轴交于点B,tan角ABO=三
如图1,在直角坐标系中,O是坐标原点,点A在y轴正半轴上,二次函数y=ax2+16x+c的图象F交x轴于B、C两点,交y