已知函数f(x)=1/2ax^2-2x+2+lnx,a∈R,设a≥1,若对任意x1,x2∈(0,1],
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 00:17:03
已知函数f(x)=1/2ax^2-2x+2+lnx,a∈R,设a≥1,若对任意x1,x2∈(0,1],
都有绝对值(x1-x2)≤绝对值(f(x1)-f(x2)),求实数a的取值范围
都有绝对值(x1-x2)≤绝对值(f(x1)-f(x2)),求实数a的取值范围
∵a≥1∴f(x)在(0,1]上单调递增
1.当x1=x2时,不等式成立,a≥1
2.不妨设x1>x2,则x1-x2≤f(x1)-f(x2)
所以f(x2)-x2≤f(x1)-x1
令g(x)=f(x)-x
=1/2ax^2-3x+2+lnx
∵g(x)在(0,1]上是不增函数
∴g’(x)=ax-3+1/x≥0
∴a≥3/x-1/x^2(参变量分离)
令1/x=t,则a≥3t-t^2
=-(t-3/2)^2+9/4
即a≥9/4 (恒成立问题)
综上1.2.a≥9/4
1.当x1=x2时,不等式成立,a≥1
2.不妨设x1>x2,则x1-x2≤f(x1)-f(x2)
所以f(x2)-x2≤f(x1)-x1
令g(x)=f(x)-x
=1/2ax^2-3x+2+lnx
∵g(x)在(0,1]上是不增函数
∴g’(x)=ax-3+1/x≥0
∴a≥3/x-1/x^2(参变量分离)
令1/x=t,则a≥3t-t^2
=-(t-3/2)^2+9/4
即a≥9/4 (恒成立问题)
综上1.2.a≥9/4
设函数f(x)=(2-a)lnx+1/x+2ax.(a∈R),若对任意a∈(-3,-2)及X1,X2∈[1,3],恒有(
ax lnx|函数f(x)=(a+1)lnx+ax*x+1,设a小于等于-2,证明任意x1,x2大于0,|f(
已知函数f(x)=1/2x^2-ax+(a+1)lnx.若-1<a<3,证明:对任意x1,x2∈(0,+无穷),x1≠x
已知函数f(x)=x^2+ax+c,g(x)=lnx+c,a c∈R若对x1,x2∈R,且x1
已知函数f(x)=ax+lnx(a属于R).(1)求f(x)的单调区间;(2)设g(x)=x*2-2x+2,若对任意x1
关于函数和分类讨论的已知函数f(x)=ax+lnx (a∈R).设g(x)=x^2-2x+2,若对任意x1∈(0,+∞)
已知函数f(x)=(a+1)lnx+ax^2+1,设a=4|x1-x2|
已知函数f(x)=ax^2+bx+1(a>0,b∈R),设方程f(x)=x有两个实数根x1,x2
已知二次函数f(x)=ax^2+bx+1(a>0,b∈R) 设方程f(x)=x 有两个实数根x1 x2
设函数f(x)=1/2x2+ax+2lnx,a属于R,已知函数f(x)在x=1处有极值 证明对任意的n﹥1,不等式ln2
已知函数f(x)=lnx-ax+(1-a)/x-1,设g(x)=x^2-2bx+4时,当a=1/4时,若对任意0<X1<
求求求!已知函数fx=ax+lnx(a∈R),求单调区间,设gx=x²-2x+1,对任意x1∈(0,正无穷),