若等边△ABC的边长为2倍根号3,若平面内一点M满足向量CM=1/6CB+2/3向量CA,则向量MA乘以向量MB得
等边△ABC的边长为2√3,平面内一点M满足向量CM=1/6向量CB+2/3向量CA,则向量MA与向量MB的数量积为
若正三角形ABC边长2根号3,平面内一点M满足向量CM=1/6向量CB+2/3向量CA,则向量MA乘向量MB为?
若等边三角形ABC的变长为2倍根号3,平面内一点M满足向量CM=1\6向量CB+2\3向量CA,则向量MA与MB的数量积
若等边三角形ABC的边长为2√3,平面内一点M满足向量CM=1/6向量CB+2/3向量CA,则向量MA*向量MB=?
若等边三角形的边长为2根号3,平面内一点M满足向量CM=1/6向量CB+2/3向量CA,则向量M
若M为△ABC所在平面内一点,且满足(向量MB-向量MC)*(向量MB+向量MC)=0,向量MB+向量MC+2向量MA=
ABC中 C=90 CA=CB=3 点M满足向量BM=2向量MA,则向量CM点乘向量CB等于
在三角形abc中,已知d为ab边上一点,若ad的向量=2倍db向量,cd向量=3分之1ca向量+Y倍cb向量,则y=?
△ABC中,若向量CB×向量AC+向量AC^2+向量BC×向量AB+向量CA×向量AB=0.则△ABC的形状为?
若向量AB=1,向量CA=2向量CB,则向量CA*向量CB的最大值为
若向量AB=1,向量CA=2向量CB,则向量CA*向量CB的最大值为()
已知△ABC中,AB=AC=BC=6,平面内满足一点M满足向量BM=2/3向量BC-1/3向量BA,则向量AC点乘向量M