设l是抛物线y^2=x从点(1,1)到点(4,2)的一段弧的一段弧 求∫(y-x)dy+(x+y)dx
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 05:33:44
设l是抛物线y^2=x从点(1,1)到点(4,2)的一段弧的一段弧 求∫(y-x)dy+(x+y)dx
y² = x,2y dy = dx
∫_C (y - x)dy + (x + y)dx
= ∫(1→2) [(y - y²) + (y² + y)(2y)] dy
= ∫(1→2) (y - y² + 2y³ + 2y²) dy
= ∫(1→2) (2y³ + y² + y) dy
= [(2/4)y⁴ + (1/3)y³ + (1/2)y²]:(1→2)
= [(1/2)(16) + (1/3)(8) + (1/2)(4)] - [1/2 + 1/3 + 1/2]
= 34/3
∫_C (y - x)dy + (x + y)dx
= ∫(1→2) [(y - y²) + (y² + y)(2y)] dy
= ∫(1→2) (y - y² + 2y³ + 2y²) dy
= ∫(1→2) (2y³ + y² + y) dy
= [(2/4)y⁴ + (1/3)y³ + (1/2)y²]:(1→2)
= [(1/2)(16) + (1/3)(8) + (1/2)(4)] - [1/2 + 1/3 + 1/2]
= 34/3
计算∫L(x+y)dx+(y-x)dy,其中L是y=x^2上从点(0,0)到点(1,1)的一段弧
计算∫Lxydx+(y-x)dy,其中L是抛物线y=x2上从点(0,0)到点(1,1)的一段弧
计算积分∫(x^3-y)dx-(x+siny)dy,其中L是曲线y=x^2上从点(0,0)到点(1,1)之间的一段有向弧
计算∫L((x+y)dx+(x-y)dy),其中L是抛物线y=x^2从点(0,0)到(1,1)的一段弧.
计算曲线积分 ∫(x^2-y^2)dx,其中l是曲线y=x^2上从点(0,0)到点(2,4)的一段弧
计算∫L(x+y)dx+(y-x)dy,期中L是从点(1,1)到点(4,2)的直线段
求曲线I=∫L (x+y)dx+(x-y)dy,其中L是从点(-1,1)到点(1,1)间的抛物线y=x2段.请用格林公式
曲线积分:∫(y+xe^2y)dx+(x^2*e^2y+1)dy,其中L是从点(0,0)到点(4,0)的上半圆周
曲线积分,设L为折线y=1-|1-x|从点(0,0)到点(2,0)的一段,则线积分∫(x^2+y^2)dx+(x^2-y
求L=∫(x^2+2xy)dx-(x^2+y^2siny)dy,其中L是抛物线y=x^2从点A(-1,1)到点B(1,1
高数题求解,求∫(x-y)dx-(x+siny)dy,其中L沿y=√(2x-x)从点(0,0)到点(1,1)
计算∫L(3xy+sinx)dx+(x^2-ye^y)dy,其中L是从点(0,0)到点(4,8)的抛物线段y=x^2-2