作业帮 > 数学 > 作业

设l是抛物线y^2=x从点(1,1)到点(4,2)的一段弧的一段弧 求∫(y-x)dy+(x+y)dx

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/19 05:33:44
设l是抛物线y^2=x从点(1,1)到点(4,2)的一段弧的一段弧 求∫(y-x)dy+(x+y)dx
设l是抛物线y^2=x从点(1,1)到点(4,2)的一段弧的一段弧 求∫(y-x)dy+(x+y)dx
y² = x,2y dy = dx
∫_C (y - x)dy + (x + y)dx
= ∫(1→2) [(y - y²) + (y² + y)(2y)] dy
= ∫(1→2) (y - y² + 2y³ + 2y²) dy
= ∫(1→2) (2y³ + y² + y) dy
= [(2/4)y⁴ + (1/3)y³ + (1/2)y²]:(1→2)
= [(1/2)(16) + (1/3)(8) + (1/2)(4)] - [1/2 + 1/3 + 1/2]
= 34/3