曲线积分,设L为折线y=1-|1-x|从点(0,0)到点(2,0)的一段,则线积分∫(x^2+y^2)dx+(x^2-y
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 22:16:24
曲线积分,设L为折线y=1-|1-x|从点(0,0)到点(2,0)的一段,则线积分∫(x^2+y^2)dx+(x^2-y^2)dy等于
答案说等于4/3,可我算出来是-4/3,
我用的是格林公式,我加了一条辅助线y=0
算出来格林公式部分=4/3,辅助线部分=8/3,4/3-8/3=-4/3,
麻烦各位老师看看我在哪个部分出错了.
答案说等于4/3,可我算出来是-4/3,
我用的是格林公式,我加了一条辅助线y=0
算出来格林公式部分=4/3,辅助线部分=8/3,4/3-8/3=-4/3,
麻烦各位老师看看我在哪个部分出错了.
格林公式部分=4/3说明你取的闭合曲线正方向,即逆时针方向,辅助线部分=8/3说明你的辅助线y=0取的方向是从x=0到x=2,那么为了使闭合曲线整体上取逆时针方向,折线L就得取(0,2)到(1,1)再到(0,0)的方向,你计算出的-4/3正是沿这个方向的,但题目要求的是从点(0,0)到点(2,0)的曲线积分,和你算的方向正好相反,所以加个负号就对了.
曲线积分,设L为折线y=1-|1-x|从点(0,0)到点(2,0)的一段,则线积分∫(x^2+y^2)dx+(x^2-y
计算曲线积分 ∫(x^2-y^2)dx,其中l是曲线y=x^2上从点(0,0)到点(2,4)的一段弧
曲线积分:∫(y+xe^2y)dx+(x^2*e^2y+1)dy,其中L是从点(0,0)到点(4,0)的上半圆周
计算积分∫(x^3-y)dx-(x+siny)dy,其中L是曲线y=x^2上从点(0,0)到点(1,1)之间的一段有向弧
计算曲线积分∫(3y-x^2)dx+(7x+√(y^4+1)dy,其中L为半圆y=√(9-x^2)从点A(3,0)到点B
计算曲线积分∫L (x^2+2xy)dx+(x^2+y^4)dy,其中L为点(0,0)到点(1,1)的曲线弧y=sin(
计算曲线积分∫(e^x)(1-2cosy)dx+2(e^x)sinydy,其中L是由点A(派,0)经曲线y=sinx到点
计算∫L(x+y)dx+(y-x)dy,其中L是y=x^2上从点(0,0)到点(1,1)的一段弧
计算曲线积分I=∫(e^y+x)dx+(xe^y-2y)dy,L为从(0,0)到(1,2)的圆弧
计算曲线积分:∫(x-1)/((x-1)^2+y^2)dy -y/((x-1)^2+y^2)dx,L为包含点A(0,1)
设Γ为曲线x=t,y=t^2,z=t^3上相应于t从0变为1的曲线弧.第二类曲线积分∫P(x,y,z)dx+Q(x,y,
计算曲线积分I=∫L(y^3*e^x-2y)dx+(3y^2*e^x-2)dy,其中曲线L是从原点O(0,0)到点A(2