已知如图,在△ABC中,∠BAC=60度,∠ACB=40度,AP,BQ分别平分∠BAC和∠ABC,求证:BQ+AQ=AB
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/14 09:46:23
已知如图,在△ABC中,∠BAC=60度,∠ACB=40度,AP,BQ分别平分∠BAC和∠ABC,求证:BQ+AQ=AB+BP
证明要点:
延长AB到D,使BD=BP,连接PD
根据已知条件∠BAC=60度,∠ACB=40度得:
∠PBD=100°,
所以∠D=40°=∠ACB
因为AP平分∠BAC
所以∠PAD=∠PAC
因为AP=AP
所以△PAD≌△PAC
所以AD=AC
因为∠BAC=60度,∠ACB=40度,AP,BQ分别平分∠BAC和∠ABC
所以可得∠CBQ=40度=∠ACB
所以BQ=CQ
所以BQ+AQ=CQ+AQ=AC
所以BQ+AQ=AD=AB+BD
所以BQ+AQ=AB+BP
供参考!JSWYC
延长AB到D,使BD=BP,连接PD
根据已知条件∠BAC=60度,∠ACB=40度得:
∠PBD=100°,
所以∠D=40°=∠ACB
因为AP平分∠BAC
所以∠PAD=∠PAC
因为AP=AP
所以△PAD≌△PAC
所以AD=AC
因为∠BAC=60度,∠ACB=40度,AP,BQ分别平分∠BAC和∠ABC
所以可得∠CBQ=40度=∠ACB
所以BQ=CQ
所以BQ+AQ=CQ+AQ=AC
所以BQ+AQ=AD=AB+BD
所以BQ+AQ=AB+BP
供参考!JSWYC
如图,在△ABC中,∠BAC=60°,∠ACB=40°,P、Q分别在BC、CA上,并且AP、BQ分别是∠BAC、∠ABC
在△ABC中,∠BAC=60°,∠C=40°,AP平分∠BAC交BC于P,BQ平分∠ABC交AC于Q.求证:AB+BP=
关于 等腰三角形的如图 在△ABC中 ∠BAC=60°∠ACB=40° P.Q分别在BC CA上 并且 AP BQ分别为
如图已知△ABC内,∠BAC=60°,∠C=40°,PQ分别在BC,CA上,且AP,BQ分别是∠BAC,∠ABC的平分线
已知在△ABC内,∠BAC=60°,∠C=40°,PQ分别在BC,CA上,且AP,BQ分别是∠BAC,∠ABC的
△ABC内,∠BAC=60 ∠C=40°,P,Q分别在BC,CA上 并且AP,BQ分别是∠BAC ∠ABC的角平分线 求
已知,如图,在三角形ABC中,AP平分角BAC,且角BAC=42度,角ABC=32度.求证:AB=AC+PB
如图,在△ABC中,∠ABC=60°,AD、CE分别平分∠BAC、∠ACB.求证:OE=OD
已知:如图,在△ABC中,AB=AC,AD,AE分别平分∠BAC和∠CAF,AE=DC.求证:四边形ADCE是矩形
已知:如图在三角形ABC中,∠C=90°,点P、Q分别在BC、AC上 求证:AP的平方+BQ的平方=AB的平方+PQ的平
已知在△ABC中,(AB>AC)AP平分∠BAC,CP⊥AP于P,M是BC中点,求证:MP=1/2(AB-AC)
如图,已知:在△ABC中,AB=AC,∠DBC=∠DCB.求证:AD平分∠BAC