用数学归纳法证明:若数列{an}的通项公式是an=2n+3,则前n项和Sn=n^2+4n
若数列{an}的前n项和为Sn,且满足:Sn=(3/2)an-2+n(n∈N*),用数学归纳法证明:an=3^(n-1)
数列{an}中,满足a1=1,Sn=n^2·an (n属于N正),猜想数列的通项公式,用数学归纳法证明
数列{AN}前N项和SN=3N平方-2N,则{AN}的通项公式是?
Sn=1/2(an+1/an) Sn是前n项和 求a1,a2,a3.猜想{an}的通项公式,并用数学归纳法证明
a1=1/6,前n项和sn=n(n+1)/2*an,猜想an的通项公式,并用数学归纳法证明
已知数列{an}的前n项和Sn=2n方-3n 1.求{an}的 通项公式 2.证明{an}是等差数列
数列{an}的通项公式为an={2n+3,n是奇数.4^n,n是偶数},求前n项和sn
数列{an}的前n项和为Sn,Sn=2an-3n(n∈N)(1)证明数列an+3是等比数列,(2)求数列an的通项公式
已知数列an的前n项和为sn,且sn+an=n^2+3n+5/2,证明数列{an-n}是等比数列
已知正整数数列{an},(n∈N*)中,前n项和为Sn,且2Sn=an+1/an,用数学归纳法证明an=(根号下n)-(
在数列 an 中,a1=-2/3 其前n项和Sn满足an=Sn+1/Sn+2(n>=2).用数学归纳法证明Sn=-(n+
数列an的前n项和sn=3n^2+2n,证明an是等差数列