数列{an}中,满足a1=1,Sn=n^2·an (n属于N正),猜想数列的通项公式,用数学归纳法证明
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 14:29:37
数列{an}中,满足a1=1,Sn=n^2·an (n属于N正),猜想数列的通项公式,用数学归纳法证明
第二步,假设n=k时,猜想成立,即ak=2/[k(k+1)]
∴当n=k+1时,S(k+1)=(k+1)^2·a(k+1)
第二步,假设n=k时,猜想成立,即ak=2/[k(k+1)]
∴当n=k+1时,S(k+1)=(k+1)^2·a(k+1)
解:(1)S1=a1=1; (先求出前4项再猜)
S2=a1+a2=2^2×a2=4a2;
a2=(1/3)a1=1/3;S2=a1+a2=4/3
S3=a1+a2+a3=3^2×a3=9a3;
a1+a2=8a3;a3=(1/8)(4/3)=1/6;
S3=a1+a2+a3=1+1/3+1/6=3/2;
S4=a1+a2+a3+a4=4^2×a4=16a4;
a1+a2+a3=15a4;a4=(1/15)(3/2)=1/10;
S4=a1+a2+a3+a4=1+1/3+1/6+1/10=8/5;
综上所述,S1=1=2/2,S2=4/3;S3=3/2=6/4;S4=8/5;
故猜想Sn=2n/(n+1)(n∈N*)
(2)证明如下:
S(n)-S(n-1)=a(n)=n^2×a(n)-(n-1)^2×a(n-1)
故(n-1)^2×a(n-1)=(n^2-1)×a(n)(n≥2且n∈N*)
等式两边约去(n-1)得:
(n-1)×a(n-1)=(n+1)×a(n)
a(n)/a(n-1)=(n-1)/(n+1);
采用叠乘法求通项公式:
[a(n)/a(n-1)]×[a(n-1)/a(n-2)]×.×[a(3)/a(2)]×[a(2)/a(1)]
=[(n-1)/(n+1)]×[(n-2)/n]×.×(2/4)×(1/3)
=[(n-1)×(n-2)×(n-3)×...×2×1]/[(n+1)×n×(n-1)×...×4×3]
=2/[n(n+1)](n≥2且n∈N*)(约去交错项)
验证a1=1,合乎通项公式
故有an=2/[n(n+1)](n∈N*)
Sn=2{[1-(1/2)]+[(1/2)-(1/3)]+...+[(1/n)-1/(n+1)]}
=2[1-1/(n+1)](约去交错项)
=2n/(n+1)(n∈N*)
由此得证
S2=a1+a2=2^2×a2=4a2;
a2=(1/3)a1=1/3;S2=a1+a2=4/3
S3=a1+a2+a3=3^2×a3=9a3;
a1+a2=8a3;a3=(1/8)(4/3)=1/6;
S3=a1+a2+a3=1+1/3+1/6=3/2;
S4=a1+a2+a3+a4=4^2×a4=16a4;
a1+a2+a3=15a4;a4=(1/15)(3/2)=1/10;
S4=a1+a2+a3+a4=1+1/3+1/6+1/10=8/5;
综上所述,S1=1=2/2,S2=4/3;S3=3/2=6/4;S4=8/5;
故猜想Sn=2n/(n+1)(n∈N*)
(2)证明如下:
S(n)-S(n-1)=a(n)=n^2×a(n)-(n-1)^2×a(n-1)
故(n-1)^2×a(n-1)=(n^2-1)×a(n)(n≥2且n∈N*)
等式两边约去(n-1)得:
(n-1)×a(n-1)=(n+1)×a(n)
a(n)/a(n-1)=(n-1)/(n+1);
采用叠乘法求通项公式:
[a(n)/a(n-1)]×[a(n-1)/a(n-2)]×.×[a(3)/a(2)]×[a(2)/a(1)]
=[(n-1)/(n+1)]×[(n-2)/n]×.×(2/4)×(1/3)
=[(n-1)×(n-2)×(n-3)×...×2×1]/[(n+1)×n×(n-1)×...×4×3]
=2/[n(n+1)](n≥2且n∈N*)(约去交错项)
验证a1=1,合乎通项公式
故有an=2/[n(n+1)](n∈N*)
Sn=2{[1-(1/2)]+[(1/2)-(1/3)]+...+[(1/n)-1/(n+1)]}
=2[1-1/(n+1)](约去交错项)
=2n/(n+1)(n∈N*)
由此得证
数列{an}中,满足a1=1,Sn=n^2·an (n属于N正),猜想数列的通项公式,用数学归纳法证明
已知数列﹛An﹜满足An+Sn=n,由此猜想通项公式An并用数学归纳法证明
已知数列{an}中a1=1/2,an+1=2an+1分之an[n€N+] 猜想通项公式,并用数学归纳法证明
在数列 an 中,a1=-2/3 其前n项和Sn满足an=Sn+1/Sn+2(n>=2).用数学归纳法证明Sn=-(n+
数列{an}满足a1=1,设该数列的前n项和为Sn,且Sn,Sn+1,2a1成等差数列.用数学归纳法证明:Sn=(2n-
a1=1/6,前n项和sn=n(n+1)/2*an,猜想an的通项公式,并用数学归纳法证明
数列an满足a1=1,an=2an-1/(2+an-1) (n≥2),用数学归纳法求an的通项公式?
【高二】已知数列{an}满足Sn=2n-an 计算a1 a2 a3 猜想an 并用数学归纳法证明
Sn=1/2(an+1/an) Sn是前n项和 求a1,a2,a3.猜想{an}的通项公式,并用数学归纳法证明
已知数列{an}中,an=1+1/2+1/3+...+1/n,记sn=a1+a2+...+an用数学归纳法证明sn=(n
已知数列{an}中,a1=2,an+a(n-1)=3^n猜想an的表达式并用数学归纳法加以证明
在各项为正的数列An中 ,Sn=0.5(An+1/An) 求A1 ,A2 ,A3 猜想An的通项公式 用数学归纳法证明