证明y=ax^2+bx+c,(a>0),在(-∞,2a分之b)上是减函数,在(-2a分之b,+∞)上是增函数
证明二次函数y=ax^2+bx+c(a>0)在[-b/2a,+∞)上是增函数
证明二次函数y=aX×X+bX+c(a>0)在[-b/2a,+∞)上是增函数
证明二次函数f(x)=ax的平方+bx+c(a小于0)在区间(负无穷大,-2a分之B]上是增函数.
1.证明二次函数y=ax^2+bx+c(a>0)在[-b/2a,+00)上是增函数.
证明:函数f(x)=ax²+bx+c(a>0)在[-b/2a,+∞]上是增函数
证明 2次函数y=ax²+bx+c(a>0)在[-2a/b,+∞)上是增函数
证明二次函数f(x)=ax^2+bx+c (a<0)在区间(—∞,—b/2a〕上是增函数.
证明2次函数f(x)=ax2+bx+c(a>0)在区间[-b/2a,+∞)上是增函数
证明2次函数f(x)=ax2+bx+c(a>0)在区间(-∞,-b/2a)上是增函数
证明二次函数f(x)=ax2+bx+c (a<0)在区间(-∞,-b/2a]上是增函数(用定义法证明)
已知二次函数y=ax²+bx+c的图像过A(2,0),且与直线y=-4分之3x+3,相交与B,C两点,点B在x
证明 1 二次函数f(x)=ax^2+bx+c a小于0 在区间(负无穷,-b/2a) 上是增函数