12个球有一个次品(不知道过轻还是过重)称3次 找出次品
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 19:22:37
12个球有一个次品(不知道过轻还是过重)称3次 找出次品
求求你们
求求你们
这个是把12个球分成三组 有两种可能~
平衡和不平衡~平衡很好答 如果不平衡的话 设左面的4个球是A1 A2 A3 A4右面是B1 B2 B3 B4
把A4 B4拿掉把A3放到B4的位置 A3 A4的位置放两个C组的球就能(而且第一次称量的时候记住天平哪边高)算出到底那边的球是坏求 第三步就能称出哪个球是坏球~
-------------------------------------
分三组:每组四个,第一组编号1-4,第二组5-8,第三组9-12.
第一次称:天平左边放第一组,右边放第二组.
A 第一种可能:平衡.则不同的在第三组.
接下来可以在左边放第9、10、11号,右边放1、2、3号三个正常的.
a.如果平衡,则12号是不同的;
b.如果左重右轻,则不同的在9、10、11号中,而且比正常球重.再称一次:9放左边,10放右边,如果平衡,则11号是不同的;如果左重右轻,则9号是不同的,如果右重左轻,则10号是不同的.
c.如果左轻右重,道理同b
B 第二种可能:左重右轻,则不同的在1-8号中,但不知比正常的轻还是重.
第二次称:左边放1、2、5号,右边放6、9、3号.
a.如果平衡.则不同的在4、7、8中.可以称第三次:左边放4、7,右边放9、10.如果平衡,则8是不同;如果左重右轻,则4是不同;如果左轻右重,则7是不同.
b.仍然左重右轻.则不同的在位置没有改变的1、2、6中.可以称第三次:左边放1、6,右边放9、10.如果平衡,则2是不同; 如果左重右轻,则1是不同;如果左轻右重,则6是不同.
c:左轻右重.则不同的在5、3、中,因为只有它们改变了原来的位置.可以称第三次:左放5,3,右放9,10.如果左轻右重,则5是不同,如果左重右轻,则3是不同.
C 第三种可能:左轻右重,道理同B
至此,不论发生任何情况,称三次都可以找出不同,而且知道比正常的轻了还是重了.
平衡和不平衡~平衡很好答 如果不平衡的话 设左面的4个球是A1 A2 A3 A4右面是B1 B2 B3 B4
把A4 B4拿掉把A3放到B4的位置 A3 A4的位置放两个C组的球就能(而且第一次称量的时候记住天平哪边高)算出到底那边的球是坏求 第三步就能称出哪个球是坏球~
-------------------------------------
分三组:每组四个,第一组编号1-4,第二组5-8,第三组9-12.
第一次称:天平左边放第一组,右边放第二组.
A 第一种可能:平衡.则不同的在第三组.
接下来可以在左边放第9、10、11号,右边放1、2、3号三个正常的.
a.如果平衡,则12号是不同的;
b.如果左重右轻,则不同的在9、10、11号中,而且比正常球重.再称一次:9放左边,10放右边,如果平衡,则11号是不同的;如果左重右轻,则9号是不同的,如果右重左轻,则10号是不同的.
c.如果左轻右重,道理同b
B 第二种可能:左重右轻,则不同的在1-8号中,但不知比正常的轻还是重.
第二次称:左边放1、2、5号,右边放6、9、3号.
a.如果平衡.则不同的在4、7、8中.可以称第三次:左边放4、7,右边放9、10.如果平衡,则8是不同;如果左重右轻,则4是不同;如果左轻右重,则7是不同.
b.仍然左重右轻.则不同的在位置没有改变的1、2、6中.可以称第三次:左边放1、6,右边放9、10.如果平衡,则2是不同; 如果左重右轻,则1是不同;如果左轻右重,则6是不同.
c:左轻右重.则不同的在5、3、中,因为只有它们改变了原来的位置.可以称第三次:左放5,3,右放9,10.如果左轻右重,则5是不同,如果左重右轻,则3是不同.
C 第三种可能:左轻右重,道理同B
至此,不论发生任何情况,称三次都可以找出不同,而且知道比正常的轻了还是重了.
有12个乒乓球,其中一个是次品,但不知道次品比正品轻还是重,现有一无砝码天平,称3次?
12个乒乓球,有1个质量有问题,不知道是过轻还是过重,用天平称3次,找出这只是轻还是重.
4个东西,有一个是次品,不知道次品必争品重还是轻,用天平至少称多少次保证能找出次品
有12个球,其中11个正品重量相同,一个次品,用天平称3次,请找出次品,确定它是轻还是重
思考题 12个乒乓球中一个次品,用一个天平秤3次,找出次品,并说明次品比标准球轻还是重?
10个零件有一个次品.用天平至少称几次能找出来?写出具体过程,不知道次品是轻还是重
有26个零件,其中有一个零件是次品(次品轻一些).用天平称,至少称______次能保证找出次品零件.
有12个球,其中有1个次品,但不知道次品比标准球重还是轻.问:怎样用一个天平只进行3次称量将这个次品选出?
100个零件,其中一个是次品(次品的质量轻),用天平称几次一定呢过找出这个次品?
242个零件中有一个次品(次品重一些),至少称( )次就一定能找出这个次品.
有15个型号一样的零件,其中有一个是次品(轻坠),用天平称最少()次才能保证找出次品.
有10瓶矿泉水,其中9瓶质量相同,另有1瓶次品(次品轻一些),用天平称,至少称()次保证能找出次品