设数列{an}的通项公式为an=pn+q (写出解题过程的加20!)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/20 10:02:50
设数列{an}的通项公式为an=pn+q (写出解题过程的加20!)
设数列{an}的通项公式为an=pn+q(n属于N+,P>0)
数列{bn}定义如下:对于正整数m,bm是使得不等式an大于等于m成立的所有n中的最小值.
(1)若p=2 q=-1 求数列{bm}的前2m项和公式
(2)是否存在p和q,使得bm=3m+2(m属于N+)?如果存在,求p和q的取值范围,如果不存在,说明理由.
请写出解题步骤,每回答一个问题加20(⊙o⊙)
设数列{an}的通项公式为an=pn+q(n属于N+,P>0)
数列{bn}定义如下:对于正整数m,bm是使得不等式an大于等于m成立的所有n中的最小值.
(1)若p=2 q=-1 求数列{bm}的前2m项和公式
(2)是否存在p和q,使得bm=3m+2(m属于N+)?如果存在,求p和q的取值范围,如果不存在,说明理由.
请写出解题步骤,每回答一个问题加20(⊙o⊙)
(1)an=2n-1
所以an>m可以转化为2n>=m+1,n>=(m+1)/2,bm就是满足左边的不等式的最小的n
所以bm>=(m+1)/2>(bm)-1
所以当m是奇数时(m+1)/2是整数,bm=(m+1)/2
所以当m是偶数时(m+2)/2>(m+1)/2>m/2,bm=(m+2)/2
综合起来,数列bm中奇数项是以b1=1为首项公差为1的数列
数列bm中偶数项是以b2=2为首项公差为1的数列
数列bm是首项为1,公差为1的数列
所以数列{bm}的前2m项和公式
(1+2+3+…+2m)=m*(2m+1) (根据等差数列求和公式即可)
(2)存在
an=pn+q,
pn+q>=m,因为p>0,所以n>=(m-q)/p,bm就是满足左边的不等式的最小的n
所以bm>=(m-q)/p>(bm)-1
若bm=3m+2,则3m+2>=(m-q)/p>3m+1
所以3mp+2p>=m-q>3mp+p
所以(3p-1)m+2p>=-q>(3p-1)m+p
若3p-1不等于0,
则(2p+q)/(1-3p)>=m>(p+q)/(1-3p) 这些都是移项搞定的
注意这个m是对任意的m,也就是说m=1,2,3,……
所以m不可能存在上限
所以不存在这样的p,q
所以3p-1=0,p=1/3
此时2p>=-q>p,也就是2/3>=-q>1/3
所以-1/3>q>=-2/3;p=1/3
所以an>m可以转化为2n>=m+1,n>=(m+1)/2,bm就是满足左边的不等式的最小的n
所以bm>=(m+1)/2>(bm)-1
所以当m是奇数时(m+1)/2是整数,bm=(m+1)/2
所以当m是偶数时(m+2)/2>(m+1)/2>m/2,bm=(m+2)/2
综合起来,数列bm中奇数项是以b1=1为首项公差为1的数列
数列bm中偶数项是以b2=2为首项公差为1的数列
数列bm是首项为1,公差为1的数列
所以数列{bm}的前2m项和公式
(1+2+3+…+2m)=m*(2m+1) (根据等差数列求和公式即可)
(2)存在
an=pn+q,
pn+q>=m,因为p>0,所以n>=(m-q)/p,bm就是满足左边的不等式的最小的n
所以bm>=(m-q)/p>(bm)-1
若bm=3m+2,则3m+2>=(m-q)/p>3m+1
所以3mp+2p>=m-q>3mp+p
所以(3p-1)m+2p>=-q>(3p-1)m+p
若3p-1不等于0,
则(2p+q)/(1-3p)>=m>(p+q)/(1-3p) 这些都是移项搞定的
注意这个m是对任意的m,也就是说m=1,2,3,……
所以m不可能存在上限
所以不存在这样的p,q
所以3p-1=0,p=1/3
此时2p>=-q>p,也就是2/3>=-q>1/3
所以-1/3>q>=-2/3;p=1/3
已知数列{an}的通向公式 an=pn^2+qn(p q属于R,且p,q为常数已知数列an的通向公式 an=pn^2+q
已知数列{an}的通项公式an=pn^2+qn,(p,q属于R,且p,q为常数)bn=an+1-an求证对任意实数pq数
等比数列an的首项a1=2004,公比q=-1/2,设Pn是数列an前几项积,求Pn最大时的n=?
已知数列{an}的通项公式是an=2n*2-nn=(1,2,...)是否存在非零常数p和q,使数列{an/(pn+q)}
设数列an前项和为Sn,已知Sn=2an-3n,求an的通项公式
设数列{an}的通项公式为an=n2+λn(n∈N*)且{an}满足a1
设{an}是公比为q的等比数列. ①推导{an}的前n项和公式; ②设q≠1,证明数列{an+1}不是等比数列.
设数列{an}满足a1=5.,an+1=3an,写出这个数列的前5项并归纳通项公式
数列{an}的通项公式为an=49-2n,求当n为何值时,Sn最大?最大值为多少?(详细的解题思路)
关于数列的设数列{an}的前n项和为Sn,且满足an=2-Sn(n∈N*) 求a1,a2,a3,a4的值并写出其通项公式
设数列{an}的前n项和为Sn=n^2-8n.求(1)数列{abs(an)}的通项公式
设数列{an}的前n项和为Sn,已知a1=1,Sn+1=4an+2,求数列AN的通项公式