作业帮 > 数学 > 作业

如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/20 00:59:29
如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC
扇形AOB,角AOB是90度,AO=BO=2,点C是弧AB上的一个动点,不与点A、B重合,OE垂直于AC,OD垂直于B
①当BC等于1时,求OD的值.②在三角形ODE中是否有边不改变,若存在,请求出改边长,若不存在,请说明理由.③设BD为x,三角形ODE的面积为y,求函数解析式和定义域.
不要一两句话概括的
如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC
(1)DB=BC/2=1/2,OB=1在直角三角形ODB中勾股定理得OD=√15/2
(2)由垂径定理可知,O,E,C,D四点共圆,且∠EOD=45度为定值,所以DE为定长
(3)OD=√(4-x^2),OE=√(2+x√(4-x^2))
y=(OD*OEsinπ/4)/2=[√(4-x^2)]×[√(2+x√(4-x^2))]√2/4 (0