作业帮 > 数学 > 作业

(2014•重庆)如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/14 12:34:20
(2014•重庆)如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.
(1)求证:BE=CF;
(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.
求证:①ME⊥BC;②DE=DN.
(2014•重庆)如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.
证明:(1)∵∠BAC=90°,AB=AC,
∴∠B=∠ACB=45°,
∵FC⊥BC,
∴∠BCF=90°,
∴∠ACF=90°-45°=45°,
∴∠B=∠ACF,
∵∠BAC=90°,FA⊥AE,
∴∠BAE+∠CAE=90°,
∠CAF+∠CAE=90°,
∴∠BAE=∠CAF,
在△ABE和△ACF中,

∠BAE=∠CAF
AB=AC
∠B=∠ACF,
∴△ABE≌△ACF(ASA),
∴BE=CF;

(2)①如图,过点E作EH⊥AB于H,则△BEH是等腰直角三角形,
∴HE=BH,∠BEH=45°,
∵AE平分∠BAD,AD⊥BC,
∴DE=HE,
∴DE=BH=HE,
∵BM=2DE,
∴HE=HM,
∴△HEM是等腰直角三角形,
∴∠MEH=45°,
∴∠BEM=45°+45°=90°,
∴ME⊥BC;

②由题意得,∠CAE=45°+
1
2×45°=67.5°,
∴∠CEA=180°-45°-67.5°=67.5°,
∴∠CAE=∠CEA=67.5°,
∴AC=CE,
在Rt△ACM和Rt△ECM中


CM=CM
AC=CE,
∴Rt△ACM≌Rt△ECM(HL),
∴∠ACM=∠ECM=
1
2×45°=22.5°,
又∵∠DAE=
1
2×45°=22.5°,
∴∠DAE=∠ECM,
∵∠BAC=90°,AB=AC,AD⊥BC,
∴AD=CD=
1
2BC,
在△ADE和△CDN中,

∠DAE=∠ECM
AD=CD
∠ADE=∠CDN,
∴△ADE≌△CDN(ASA),
∴DE=DN.