(2014•重庆)如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/14 12:34:20
(2014•重庆)如图,△ABC中,∠BAC=90°,AB=AC,AD⊥BC,垂足是D,AE平分∠BAD,交BC于点E.在△ABC外有一点F,使FA⊥AE,FC⊥BC.
(1)求证:BE=CF;
(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.
求证:①ME⊥BC;②DE=DN.
(1)求证:BE=CF;
(2)在AB上取一点M,使BM=2DE,连接MC,交AD于点N,连接ME.
求证:①ME⊥BC;②DE=DN.
证明:(1)∵∠BAC=90°,AB=AC,
∴∠B=∠ACB=45°,
∵FC⊥BC,
∴∠BCF=90°,
∴∠ACF=90°-45°=45°,
∴∠B=∠ACF,
∵∠BAC=90°,FA⊥AE,
∴∠BAE+∠CAE=90°,
∠CAF+∠CAE=90°,
∴∠BAE=∠CAF,
在△ABE和△ACF中,
∠BAE=∠CAF
AB=AC
∠B=∠ACF,
∴△ABE≌△ACF(ASA),
∴BE=CF;
(2)①如图,过点E作EH⊥AB于H,则△BEH是等腰直角三角形,
∴HE=BH,∠BEH=45°,
∵AE平分∠BAD,AD⊥BC,
∴DE=HE,
∴DE=BH=HE,
∵BM=2DE,
∴HE=HM,
∴△HEM是等腰直角三角形,
∴∠MEH=45°,
∴∠BEM=45°+45°=90°,
∴ME⊥BC;
②由题意得,∠CAE=45°+
1
2×45°=67.5°,
∴∠CEA=180°-45°-67.5°=67.5°,
∴∠CAE=∠CEA=67.5°,
∴AC=CE,
在Rt△ACM和Rt△ECM中
,
CM=CM
AC=CE,
∴Rt△ACM≌Rt△ECM(HL),
∴∠ACM=∠ECM=
1
2×45°=22.5°,
又∵∠DAE=
1
2×45°=22.5°,
∴∠DAE=∠ECM,
∵∠BAC=90°,AB=AC,AD⊥BC,
∴AD=CD=
1
2BC,
在△ADE和△CDN中,
∠DAE=∠ECM
AD=CD
∠ADE=∠CDN,
∴△ADE≌△CDN(ASA),
∴DE=DN.
∴∠B=∠ACB=45°,
∵FC⊥BC,
∴∠BCF=90°,
∴∠ACF=90°-45°=45°,
∴∠B=∠ACF,
∵∠BAC=90°,FA⊥AE,
∴∠BAE+∠CAE=90°,
∠CAF+∠CAE=90°,
∴∠BAE=∠CAF,
在△ABE和△ACF中,
∠BAE=∠CAF
AB=AC
∠B=∠ACF,
∴△ABE≌△ACF(ASA),
∴BE=CF;
(2)①如图,过点E作EH⊥AB于H,则△BEH是等腰直角三角形,
∴HE=BH,∠BEH=45°,
∵AE平分∠BAD,AD⊥BC,
∴DE=HE,
∴DE=BH=HE,
∵BM=2DE,
∴HE=HM,
∴△HEM是等腰直角三角形,
∴∠MEH=45°,
∴∠BEM=45°+45°=90°,
∴ME⊥BC;
②由题意得,∠CAE=45°+
1
2×45°=67.5°,
∴∠CEA=180°-45°-67.5°=67.5°,
∴∠CAE=∠CEA=67.5°,
∴AC=CE,
在Rt△ACM和Rt△ECM中
,
CM=CM
AC=CE,
∴Rt△ACM≌Rt△ECM(HL),
∴∠ACM=∠ECM=
1
2×45°=22.5°,
又∵∠DAE=
1
2×45°=22.5°,
∴∠DAE=∠ECM,
∵∠BAC=90°,AB=AC,AD⊥BC,
∴AD=CD=
1
2BC,
在△ADE和△CDN中,
∠DAE=∠ECM
AD=CD
∠ADE=∠CDN,
∴△ADE≌△CDN(ASA),
∴DE=DN.
1)如图1,△ABC中,AB>AC,AD平分∠BAC交BC于点D,在AB上截取AE=AC,过点E作EF‖BC交AD于点F
如图,△ABC中,∠BAC=90°,AD⊥BC,D为垂足,AE平分∠DAC,交BC与点E,BF平分∠ABC,交AC于点F
如图1,△ABC中,AB>AC,AD平分∠BAC交BC于点D,在AB上截取AE=AC,过点E作EF∥BC交AD于点F.
如图,已知在△ABC中,∠C=90°,AE平分∠BAC交BC于点E,点D在AB上,以AD为直径的⊙O经过点E,且交AC于
如图,在△ABC中,AB=AC,∠ACB=90°,AE平分∠BAC交BC于点E,BD⊥AE于点D,DM⊥AC交AC的延长
如图,在△ABC中,AB=AC,D是BC中点,AE平分∠BAD交BC于点E,点O是AB上一点,⊙O过A、E两点,交AD于
如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,CF平分∠BCA交AD于点E,交AB于点F,说明AE=AF
如图,Rt△ABC中,AC⊥BC,AD平分∠BAC交BC于点D,DE⊥AD交AB于点E,M为AE的中点,BF⊥BC交CM
如图:Rt△ABC中,AC⊥BC,AD平分∠BAC交BC于点D,DE⊥AD交AB于点E,M为AE的中点,BF⊥BC交CM
如图,在△ABC中,AD平分∠BAC交BC于D,AE平分∠BAD交BC于E,且BE=CD,求证AB²=AB·A
如图,在△ABC中,∠C=90°,AC=BC,AD平分∠BAC交BC于点D,DE⊥AB于E,AB=10cm,则△DEB的
如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,CE平分∠ACB交AD于点G,交AB于点E,EF⊥BC于点F,