作业帮 > 数学 > 作业

已知椭圆的焦点是F1(-4,0),F2(4,0),过点F2并垂直于X轴的直线与椭圆的一个交点为B,且|F1B|+|F2B

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 11:47:56
已知椭圆的焦点是F1(-4,0),F2(4,0),过点F2并垂直于X轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同的两点A(x1,y1),C(x2,y2)满足条件|F2A|,|F2B|,|F2C|成等差数列(1)求弦AC中点的横坐标,(3)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围
已知椭圆的焦点是F1(-4,0),F2(4,0),过点F2并垂直于X轴的直线与椭圆的一个交点为B,且|F1B|+|F2B
解 (1)由椭圆定义及条件知,2a=|F1B|+|F2B|=10,得a=5,又c=4,所以b=3
故椭圆方程为(x^2/25)+(y^2/9)=1
(2)由点B(4,yB)在椭圆上,得∣F2B∣=∣yB∣=9/5
因为椭圆的右准线方程为x=25/4,率心率为4/5.
根据椭圆意义,有∣F2A∣=4/5(25/4-x1),
∣F2C∣4/5(25/4-x2),
由∣F2A∣、∣F2B∣、∣F2C∣成等差数列,得4/5(25/4-x1)+4/5(25/4-x2)=2×9/5,由此得出x1+x2=8
设弦AC的中点为P(xo,yo),则xo=(x1+x2)/2=8/2=4
(3)解法一:由A(x1,y1),C(x2,y2)在椭圆上,得
9x12+25y12=9×25 ④,
9x22+25y22=9×25 ⑤,
由④-⑤得9(x12-x22)+25(y12-y22)=0变形即9((x1+x2)/2)(x1-x2)+25((y1+y2)/2)(y1-y2)=0(x1≠x2)
将(x1+x2)/2=xo=4,(y1+y2)/2=yo,代入上式,得36(x1-x2)+25yo(y1-y2)=0,由此得(y1-y2)/(x1-x2)=-36/25yo,又(y1-y2)/(x1-x2)=-(1/k)(k≠0),
∴-(36/25yo)=-(1/k),故k=(25/36)yo(k=0时也成立)
由点P(4,yo)在弦AC的垂直平分线上,得yo=4k+m
所以m=yo-4k=yo-(25/9)yo=-(16/9)yo.
由P(4,yo)在线段BB'(B'与B关于x轴对称,如图)的内部,得-(9/5)<yo<9/5,
所以:-(16/5)<m<16/5.
高二数学已知某椭圆的焦点是F1(-4,0),F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B| 已知F1 F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A.B两点,若三角形ABF2是 已知F1,F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A,B两点, 已知F1,F2分别为椭圆C:x2a2+y2b2=1(a>b>0)的左、右焦点,过F1且垂直于x轴的直线交椭圆C于A、B两 已知F1(-1,0),F2(1,0)是椭圆C的两个焦点,过F2且垂直于x轴的直线交于A、B两点,且|AB|=3,则C的方 已知F1(-1,0),F2(1,0)是椭圆C的两个焦点,过F2且垂直于x轴的直线交于A、B两点,且|AB|=3,求C方程 已知中心在原点,焦点在x轴上的椭圆的离心率为√2/2,F1,F2为其焦点,一直线过点F1与椭圆相交于A,B两点,且△F2 帮忙解一道椭圆的题椭圆x^2除以4+y^2=1的两个焦点分别为f1,f2,过f1作垂直于x轴的直线于椭圆相交,一个交点为 已知以F1(-2,0),F2(2,0)为焦点的椭圆与直线X+√3Y+4=0有且只有一个交点,则椭圆的长轴长为? 已知以F1(-2,0)F2(2,0)为焦点的椭圆与直线X+√3*Y+4=0有且仅有一个交点,则椭圆的长轴长为多少? 已知椭圆的焦点坐标为F1(-1,0),F2(1,0),过F2垂直于长轴的直线交椭圆于P、Q两点,且|PQ|=3. 已知F1,F2分别是椭圆的左右焦点,M,N分别为左右顶点,过F2的直线l与椭圆交于A,B两点,当l与x轴垂直时,四边形M