(1 pt) 找出函数 f(x,y)=ln(xy^2)的最大值,此函数 受限于 9x^2+3y^2=8 同时 x>0 a
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/16 08:12:45
(1 pt) 找出函数 f(x,y)=ln(xy^2)的最大值,此函数 受限于 9x^2+3y^2=8 同时 x>0 and y>0. 求最大最大值:__________
用拉格朗日乘数法,求条件极值,
设函数F(x,y)=ln(xy^2)+λ(9x^2+3y^2-8)
∂F/∂x=y^2/(xy^2)+18λx
=1/x+18λx=0,
λ=-1/(18x^2),(1)
∂F/∂y=2xy/(xy^2)+6λy
=2/y+6λy=0,
λ=-1/(3y^2),(2)
对比(1)和(2)式,消去参数λ,
y^2=6x^2,
与方程9x^2+3y^2=8联立,
x=2√6/9,
y=4/3,
由问题可知,是求最大值,
∴f(x,y)(max)=ln[(2√6/9)*(4/3)^2]
=ln(32√6/9).
设函数F(x,y)=ln(xy^2)+λ(9x^2+3y^2-8)
∂F/∂x=y^2/(xy^2)+18λx
=1/x+18λx=0,
λ=-1/(18x^2),(1)
∂F/∂y=2xy/(xy^2)+6λy
=2/y+6λy=0,
λ=-1/(3y^2),(2)
对比(1)和(2)式,消去参数λ,
y^2=6x^2,
与方程9x^2+3y^2=8联立,
x=2√6/9,
y=4/3,
由问题可知,是求最大值,
∴f(x,y)(max)=ln[(2√6/9)*(4/3)^2]
=ln(32√6/9).
讨论函数f(x,y)={ln(1+xy)/x ,x≠0 ; y ,x=0}的连续性
已知函数f(x)=ln(1+x),g(x)=a+bx-1/2x^2+1/3x^3,函数y=f(x)与函数y=g(x)的图
已知函数f(x)=ax²-1/2x+2ln(x+1) ,当x属于【0,+无穷)时,函数y=f(x)-ln(x+
已知函数f(x)=log(8-2^X) (2)当a>1时,求函数y=f(x)+f(-x)的最大值
函数求导题已知函数f(x)=ln(2-x)+ax当a>0时,求函数f(x)在区间【0,1】上的最大值
求函数f(x,y)=e^-xy 在闭区域{(x,y)│ x^2+4y^2≤1} 上的最大值和最小值...
懂的进若函数y=f(x+1)与函数y=e^2x+2的图像关于直线x+y=0对称,则f(x)=A.ln根号(x-1)-1(
求函数f(x,y)=xy-x在半圆区域D={(x,y)丨x^2+y^20}上的最大值和最小值
请找出函数f(x,y)=ln(x^2+y^2)在点(2,1)位于矢量v=(-1,2)的方向的方向导数.
3道高数题1,若函数 f(x,y)= sin(x^2 * y) / xy (xy不等于0) ,f(x,y) = 0 (x
求函数的表达式已知f(x,y)=xy/(x^2+y^2)则f(y/x,1)=?
设变量xy满足条件x+y≤3,x-y≥-1,x≥0,y≥0.且目标函数z=2x+3y的最大值为a,