作业帮 > 数学 > 作业

三角形ABC顶点分别为A(1,-1,2),B(5,-6,2),C(1,3,-1).则AC边上的高BD=?

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 19:36:37
三角形ABC顶点分别为A(1,-1,2),B(5,-6,2),C(1,3,-1).则AC边上的高BD=?
三角形ABC顶点分别为A(1,-1,2),B(5,-6,2),C(1,3,-1).则AC边上的高BD=?
三角形ABC顶点分别为A(1,-1,2),B(5,-6,2),C(1,3,-1)
AB=√[(1-5)^2+(-1+6)^2+(2-2)^2]=√41
AC=√[(1-1)^2+(-1-3)^2+(2+1)^2]=5
BC=√[(5-1)^2+(-6-3)^2+(2+1)^2]=√106
可知角BAC为钝角,D在CA延长线上,设BD=X,由勾股定理得:
BD^2=(√41)^2-X^2=(√106)^2-(X+5)^2
解得X=4,BD=5
即AC边上的高BD等于5