函数f(x)是定义在(0,+∞)上的减函数,对任意的x,y∈(0,+∞),都有f(xy)=f(x)+f(y)-1,且f4
设f(x)是定义在(0,+∞)上的单调递增函数,且对定义域内任意x,y,都有f(xy)=f(x)+f(y),f(2)=1
函数f(x)是定义在(0,+ ∞)上的减函数,对任意的x,y都有f(x+y)=f(x)+f(y)-1,且f(4)=5.
已知函数f(x)是定义在(0,∞)上的单调递增函数,且对定义域内任意的x、y都有f(xy)=f(x)+f(y)
已知f(x)是定义在(0,+∞)上的函数,对于任意的正数x,y都有f(xy)=f(x)+f(y)成立,且当x>1时f(x
设f(x)是定义在(0,+∞)的单调递增函数,且对定义域内任意x,y,都有f(xy)=f(x)f(y),f(2)=1,求
设函数y=f(x)是定义在R上的函数.对任意正数x,y都有f(xy)=f(x)+f(y);当x大于1时,f(x)小于0;
定义在R上的函数f(x)对任意x,y∈R都有f(x+y)+f(x-y)=2f(x)*f(y),且f(0)≠0,判断f(x
已知定义在(0,+∞)的函数f(x),对任意的实数x,y>0,都有f(xy)=f(x)+f(y)成立,且当x>1是.
函数y=f(x)的定义域为(0,+∞),且对定义域内的任意x、y都有f(xy)=f(x)+f(y),且f(2)=1,则f
设f(x)是在定义(0,+∞)上的单调递增函数,且对定义域内任意x,y都有f(xy)=f(x)+f(y)且f(2)=1,
已知函数f(x)是定义在(0,+∞)上的减函数,且满足f(xy)=f(x)+f(y),f(4)=1,
f(x)是定义在(0,+∞)上的增函数,对正实数x、y都有f(xy)=f(x)+f(y)成立,且f(2)=1