作业帮 > 数学 > 作业

设f(x)是定义在R上单调递减的奇函数,若x1+x2>0,x2+x3>0,x3+x1>0,则(  )

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/15 16:11:57
设f(x)是定义在R上单调递减的奇函数,若x1+x2>0,x2+x3>0,x3+x1>0,则(  )
A. f(x1)+f(x2)+f(x3)>0
B. f(x1)+f(x2)+f(x3)<0
C. f(x1)+f(x2)+f(x3)=0
D. f(x1)+f(x2)>f(x3
设f(x)是定义在R上单调递减的奇函数,若x1+x2>0,x2+x3>0,x3+x1>0,则(  )
∵x1+x2>0,x2+x3>0,x3+x1>0,
∴x1>-x2,x2>-x3,x3>-x1
又f(x)是定义在R上单调递减的奇函数,
∴f(x1)<f(-x2)=-f(x2),f(x2)<f(-x3)=-f(x3),f(x3)<f(-x1)=-f(x1),
∴f(x1)+f(x2)<0,f(x2)+f(x3)<0,f(x3)+f(x1)<0,
∴三式相加整理得f(x1)+f(x2)+f(x3)<0
故选B