坐标原点O,抛物线y^2=2x与过焦点的直线教育A,B两点,则向量OA*向量OB=?
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 03:29:59
坐标原点O,抛物线y^2=2x与过焦点的直线教育A,B两点,则向量OA*向量OB=?
设,点A坐标为(X1,Y1),点B坐标为(X2,Y2).
|OA|^2=X1^2+Y1^2=X1^2+2X1,
|OB|^2=X2^2+2X2.
|AB|^2=(P+X1+X2)^2.(焦半径公式,可得).
Y^2=2X,2P=2,P=1,则焦点F的坐标为(1/2,0),
令,直线AB的方程为:Y=K(X-1/2),
K^2*(X-1/2)^2=2X,
K^2*X^2-(K^2+2)X+K^2/4=0,
X1+X2=(K^2+2)/K^2,
X1*X2=1/4.
令,向量OA与向量OB的夹角为X,
向量OA*向量OB=|OA|*|OB|*COSX
=|OA|*|OB|*(OA^2+OB^2-AB^2)/(2*|OA|*|OB|)
=1/2*(OA^2+OB^2-AB^2)
=1/2*[X1^2+2X1+X2^2+2X2-(1+X1+X2)^2]
=1/2*(-3/2)
=-3/4.
|OA|^2=X1^2+Y1^2=X1^2+2X1,
|OB|^2=X2^2+2X2.
|AB|^2=(P+X1+X2)^2.(焦半径公式,可得).
Y^2=2X,2P=2,P=1,则焦点F的坐标为(1/2,0),
令,直线AB的方程为:Y=K(X-1/2),
K^2*(X-1/2)^2=2X,
K^2*X^2-(K^2+2)X+K^2/4=0,
X1+X2=(K^2+2)/K^2,
X1*X2=1/4.
令,向量OA与向量OB的夹角为X,
向量OA*向量OB=|OA|*|OB|*COSX
=|OA|*|OB|*(OA^2+OB^2-AB^2)/(2*|OA|*|OB|)
=1/2*(OA^2+OB^2-AB^2)
=1/2*[X1^2+2X1+X2^2+2X2-(1+X1+X2)^2]
=1/2*(-3/2)
=-3/4.
坐标原点O,抛物线y^2=2x与过焦点的直线教育A,B两点,则向量OA*向量OB=?
坐标原点为O,抛物线y^2=2x与过焦点的直线交于A,B两点,则向量OA乘于向量OB=?
设坐标原点为0,抛物线y平方=2x与过焦点的直线交于A,B两点,则向量OA乘以向量OB=?
设坐标原点是O,抛物线Y^2=2X与过焦点的直线交于AB两点,则向量OA乘以向量OB等于( ).
设坐标原点为O,过抛物线Y方=2X的焦点F作直线交抛物线与A.B两点,则OA向量·OB向量的值为?
设坐标原点为O,抛物线y²=2x,与过焦点的直线交于A、B两点,则向量OA乘向量OB的值为?
以O为坐标原点,抛物线y^2=2x与过其焦点的直线交于A、B两点,则向量OA乘向量OB等于
抛物线y^2=2x与过焦点F的直线交于A,B两点求向量OA*OB(O为原点)
给定抛物线C:y^2=4x,F是C的焦点,过点F的直线L与C相交于A,B两点,记O为坐标原点.求1、OA向量*OB向量的
给定抛物线,C:y^2=4x,F是C的焦点,过点F的直线L与C相交于A,B两点,记O为坐标原点,求向量OA乘以向量OB的
设原点坐标为O,抛物线y^2=4x与过焦点的直线交于A,B两点,求向量OA乘以向量OB等于多少
设坐标原点为0,抛物线y^2=2x与过交点的直线交于A,B两点,则向量OA 乘向量OB等于