1、设f(x)是定义在R上的奇函数,且当x∈[0,正无穷)时,f(x)=x(1+三次根号下x),求f(x)在R上的解析式
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 03:53:59
1、设f(x)是定义在R上的奇函数,且当x∈[0,正无穷)时,f(x)=x(1+三次根号下x),求f(x)在R上的解析式.
2、已知f(x),g(x)分别是(-a,a)上的奇函数和偶函数,求证:f(x)•g(x)是(-a,a)上的奇函数.
2、已知f(x),g(x)分别是(-a,a)上的奇函数和偶函数,求证:f(x)•g(x)是(-a,a)上的奇函数.
楼上有误
1.
令x∈(-∞,0]
则-x∈[0,+∞)
因为x∈[0,+∞)时f(x)=x(1+三次根号下x)
所以f(-x)=-x[1+三次根号下(-x)]
又因为是奇函数,所以f(x)=-f(-x)
所以f(x)=-{-x[1+三次根号下(-x)]}=x[1+三次根号下(-x)] (x∈(-∞,0])
所以f(x)在R上的解析式为:
f(x)=x[1+三次根号下(-x)] , x∈(-∞,0]
f(x)=x(1+三次根号下x) , x∈[0,+∞)
2.
令h(X)=f(x)•g(x)
则h(-X)=f(-x)•g(-x)
因为f(x),g(x)分别是(-a,a)上的奇函数和偶函数
所以f(-x)=-f(x),g(-x)=g(x)
所以h(-X)=f(-x)•g(-x)=-f(x)g(x)=-h(X)
所以h(x)是奇函数
所以f(x)•g(x)是奇函数
1.
令x∈(-∞,0]
则-x∈[0,+∞)
因为x∈[0,+∞)时f(x)=x(1+三次根号下x)
所以f(-x)=-x[1+三次根号下(-x)]
又因为是奇函数,所以f(x)=-f(-x)
所以f(x)=-{-x[1+三次根号下(-x)]}=x[1+三次根号下(-x)] (x∈(-∞,0])
所以f(x)在R上的解析式为:
f(x)=x[1+三次根号下(-x)] , x∈(-∞,0]
f(x)=x(1+三次根号下x) , x∈[0,+∞)
2.
令h(X)=f(x)•g(x)
则h(-X)=f(-x)•g(-x)
因为f(x),g(x)分别是(-a,a)上的奇函数和偶函数
所以f(-x)=-f(x),g(-x)=g(x)
所以h(-X)=f(-x)•g(-x)=-f(x)g(x)=-h(X)
所以h(x)是奇函数
所以f(x)•g(x)是奇函数
1、设f(x)是定义在R上的奇函数,且当x∈[0,正无穷)时,f(x)=x(1+三次根号下x),求f(x)在R上的解析式
设f(x)是定义在r上的奇函数、且当x属于[0,正无极大)时,f(x)=x(1+x的根号三次),求f(x)在R上的解析式
设f(x)是定义在R上的奇函数,且当x ∈【0,正无穷)时,f(x)=x (1+3^√x),求f(x) 在R上解析式
若函数f(x)是定义在R上的奇函数,且当x属于(0,+无穷)时,f(x)=x(1+三次根号下x)
设f(x)是定义在R上的奇函数,且当x属于【0,正无穷大)时,f(x)=(1+3根号x),求f(x)在R上的解析式
设f(x)是定义在R上的奇函数,当x属于【0.正无穷)时,f(x)=x(1+开3根号的x),求F(x)d 解析式
设f(x)是定义在R上的奇函数,且当x属于[0,正无穷大] ,f(x) =x(1+x开立方根),求f(x)在R上的解析式
设f(x)是定义在R上的奇函数,且当x属于【0,+00)时,f(x)=(1+3根号x),求f(x)在R上的解析式
设f(x)是定义在R上的奇函数,且当x∈[0,+∞)时,f(x)=x(1+x的立方根),求f(x)在R上的解析式.
f(x)是定义在R上的奇函数,且当x属于【0,正无穷大)时,f(x)=(1+³根号x),求f(x)在R上的解析
设f(x)是定义在R上的奇函数,且当X属于【0,无穷大)时,f(X)=X(1+3√x),求f(x)在R上的解析式
设f(x)是R上的奇函数,当x 属于(a,正无穷),f(x)=x(1+三次根号下x),