已知椭圆T:x²/a²+y²/b²=1(a>b>0),直线l1:y=k1x+p交
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 23:31:36
已知椭圆T:x²/a²+y²/b²=1(a>b>0),直线l1:y=k1x+p交椭圆T于C、D两点,交直线l2:y=k2x于E点,若k1·k2= -b²/a²,问E是否是CD的中点,若是,请给出证明;若不是,请说明理由.
已知椭圆T的方程为x^2/a^2+y^2/b^2=1(a>b>0),A(0,b),B(0,-b)和Q(a,0)为T的三个顶点.
设直线l1:y=k1x+p交椭圆T于C,D两点,交直线l2:y=k2x于点E,若k1k2=—b^2/a^2,
证明:E为CD的中点.
证明:椭圆方程:x²/a²+y²/b²=1即b²x²+a²y²=a²b²
将直线y=k1x+p代入椭圆方程,
整理:(a²k1²+b²)x²+2pk1a²x+a²p²-a²b²=0
韦达定理:x1+x2=-2pk1a²/(a²k1²+b²)
设CD中点为G(x,y)
x=(x1+x2)/2=-pk1a²/(a²k1²+b²)
代入直线y=k1x+p,求得y=pb²/(a²k1²+b²)
所以中点G[-pk1a²/(a²k1²+b²),pb²/(a²k1²+b²)]
联立直线y=k2x和y=k1x+p
解得交点E坐标:(p/(k2-k1),k2p/(k2-k1))
因为k1k2=-b²/a²,所以k2=-b²/a²k1
那么点E的横坐标=p/[-b²/(a²k1)-k1]=-pk1a²/(a²k1²+b²)
纵坐标=[-b²/(a²k1)]p/[-b²/(a²k1)-k1]=pb²/(a²k1²+b²)
由此,可知点G和点E的坐标重合
所以点E是CD的中点
证毕.
百度资源.
设直线l1:y=k1x+p交椭圆T于C,D两点,交直线l2:y=k2x于点E,若k1k2=—b^2/a^2,
证明:E为CD的中点.
证明:椭圆方程:x²/a²+y²/b²=1即b²x²+a²y²=a²b²
将直线y=k1x+p代入椭圆方程,
整理:(a²k1²+b²)x²+2pk1a²x+a²p²-a²b²=0
韦达定理:x1+x2=-2pk1a²/(a²k1²+b²)
设CD中点为G(x,y)
x=(x1+x2)/2=-pk1a²/(a²k1²+b²)
代入直线y=k1x+p,求得y=pb²/(a²k1²+b²)
所以中点G[-pk1a²/(a²k1²+b²),pb²/(a²k1²+b²)]
联立直线y=k2x和y=k1x+p
解得交点E坐标:(p/(k2-k1),k2p/(k2-k1))
因为k1k2=-b²/a²,所以k2=-b²/a²k1
那么点E的横坐标=p/[-b²/(a²k1)-k1]=-pk1a²/(a²k1²+b²)
纵坐标=[-b²/(a²k1)]p/[-b²/(a²k1)-k1]=pb²/(a²k1²+b²)
由此,可知点G和点E的坐标重合
所以点E是CD的中点
证毕.
百度资源.
已知椭圆x²/16+y²/4=1,长轴右顶点,短轴上顶点分别为A,B,过AB中点P作一条直线,交椭圆
已知椭圆:x²/4+y²=1.直线x+y=1交椭圆于A.B两点,直线y=kx(k>0)交椭圆于C.D
已知直线x+y-1=0与椭圆x²/a²+y²/b²=1(a>b>0)交于A,B两
怎么求椭圆方程已知p是椭圆x²/a²+y²/b²=1(a>b>0)上任意一点,p
已知斜率为1的直线过椭圆x²/4+y²/3=1的左焦点,交椭圆于点A ,B,求AB长
证明:过椭圆x²/a²+y²/b²=1的中心作一直线与椭圆交于A,B两点,则当A
已知椭圆(x^2)/2+y^2=1及定点P(1,0).过点P的直线l交椭圆于A,B两点,交Y轴于点P,Q,若P,Q在线段
高二数学:已知椭圆x^2+y^2=4,过点P(1,0)作一条直线交椭圆于A B两点. 求|AB|最
已知椭圆方程x^2/(a^2)+y^2/(b^2)=1(a>b>0),A(m,0)为椭圆外一定点.过A作直线l交椭圆于P
已知椭圆方程x²/a²+y²=1(a>b>0),A(m,0)为椭圆外的一定点,过A作直线l
已知椭圆X²/9+Y/²b=1(0<b<3),左右焦点分别为F1,F2,过F1的直线L交椭圆于A,B
设直线 2x+y+2=0关于原点对称的直线为L1,若L1与椭圆x^2+y^2/4=1交点A,B,点P为椭圆上动点,则三角