【高数】求曲面积分ff∑dS/(x^2+y^2+z2),其中∑是介于平面z=0和z=1之间的圆柱面x^2+y^2=1.
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 02:14:11
【高数】求曲面积分ff∑dS/(x^2+y^2+z2),其中∑是介于平面z=0和z=1之间的圆柱面x^2+y^2=1.
求曲面积分ff∑dS/(x^2+y^2+z2),其中∑是介于平面z=0和z=1之间的圆柱面x^2+y^2=1.
PS:附加一个小问题 4x+2yIn(x+根号(1+x^2))对x求偏导答案怎么会是4+(2y)/根号(1+x^2)?
求曲面积分ff∑dS/(x^2+y^2+z2),其中∑是介于平面z=0和z=1之间的圆柱面x^2+y^2=1.
PS:附加一个小问题 4x+2yIn(x+根号(1+x^2))对x求偏导答案怎么会是4+(2y)/根号(1+x^2)?
圆柱面x^2+y^2=1的投影的面积0,只计算平面z=0和z=1+x即可,而平面z=0代入为0 平面z=1+x的投影:x^2+y^2
再问: 和答案不一样啊 答案是π^2/2
再答: 谢谢采纳!
再问: 和答案不一样啊 答案是π^2/2
再答: 谢谢采纳!
计算曲面积分∫∫1/(x^2+y^2+z^2)ds,其中S是介于平面z=0及z=H之间的圆柱面x^2+y^2=R^2.(
计算曲面积分ds/x^2+y^2+z^2.其中L是介于平面z=0及z=h之间的圆柱面x^2+y^2=R^2
计算对面积的曲面积分zds 圆柱面x^2+y^2=1介于平面z=0 和z=3之间的部分
计算曲面积分(如图),其中∑是介于平面Z=0和Z=H(H>0)之间的圆柱面x^2+y^2=R^2
高数 设Ω是圆柱面 x^2+y^2=a^2介于z=0和z=1之间的外侧,则ff(x^2+y^2)dxdy
求曲面积分zdS,Σ是圆柱面x^2+y^2=1,平面z=0和z=1+x所围立体的表面
计算曲面积分闭合曲面I=ff(x^2+y^2)dS.其中曲面为球面x^2+y^2+z^2=2(x+y+z)
计算曲面积分∫∫∑ z^2 dS其中 ∑为柱面x^2+y^2=4 介于0≤z≤6的部分
求一个积分题目设∑是圆柱面x^2+y^2=4介于z=0,z=3之间部分的外侧,则∫∫x^2dxdy是多少书上的答案是0,
高斯公式计算曲面积分I=∫∫-ydxdz+(z+1)dxdy 其中Σ是圆柱面 x^2+y^2=4 被x+z=2和z=0所
高数题设曲面∑为柱面x^2+y^2=1介于平面z=-2与z=2之间的部分,则曲面积分∫∫(∑)(x^2+yz+y^2)d
高数曲面和积分问题平面H:4x+8y+z=k是曲面S:z=9-x^2-4y^2的切平面求k计算曲面S与xy平面包围的部分