映射的一道数学题设f是集合M={a,b,c,d}到N={1,2,3}的映射,且有f(a)+f(b)+f(c)+f(d)=
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/20 12:03:59
映射的一道数学题
设f是集合M={a,b,c,d}到N={1,2,3}的映射,且有f(a)+f(b)+f(c)+f(d)=9,那么映射的个数是多少?
设f是集合M={a,b,c,d}到N={1,2,3}的映射,且有f(a)+f(b)+f(c)+f(d)=9,那么映射的个数是多少?
-1+0+1=0
a-1,b0,c1 a-1.b1,c0
a0,b-1,c1 a0,b1,c-1
a1,b0,c-1 a1,b-1,c0
6种对应法则(可用分步记数原理3*2=6)
0+0+0=0
a0,b0,c0
1种对应法则
共6+1=7种
相关知识:
设A,B是两个集合,若按某种对应法则f,对于集合A中任何一个元素,集合B中都有唯一元素和它对应,这样的对应叫做集合A到集合B的映射
a-1,b0,c1 a-1.b1,c0
a0,b-1,c1 a0,b1,c-1
a1,b0,c-1 a1,b-1,c0
6种对应法则(可用分步记数原理3*2=6)
0+0+0=0
a0,b0,c0
1种对应法则
共6+1=7种
相关知识:
设A,B是两个集合,若按某种对应法则f,对于集合A中任何一个元素,集合B中都有唯一元素和它对应,这样的对应叫做集合A到集合B的映射
f是集合M={a,b,c,d}到集合N={0,1,2}的映射,且f(a)+f(b)+f(c)+...
排列组合+集合f是集合P={a、b、c、d、e}到集合Q={0、1、2}的映射,满足f(a)+f(b)+f(c)+f(d
设集合M={a,b,c},N={0,1},若映射f:M→N满足f(a)+f(b)=f(c),则映射f:M→N的个数为__
设f是集合M=[a.b.c.d.]集合【1.2.3.4.】的映射.且f[a]加f[b]加f[c]加[d]等于9那么映射的
有关映射方面的设集合A={a,b,c},B={-1.0.1},映射f:A→B满足f(a)-f(b)=f(c)求映射f:A
有关映射的概念已知集合M={a,b,c},N={-3,0,3},f是从集合M都集合N的映射,则满足f(a)+f(b)+f
集合A={a.b.c}B={-1.0.1}从A到B的映射F满足F(a)=F(b)+F(c),那么这样的映射F的个数是几个
已知集合M={a,b,c}N={-1,0,1},f是M到N的映射,满足f(a)+f(b)+f(c)=0的影射个数是___
设集合A={a,b,c},B={-1,1,0},映射f:A→B,满足f(a)-f(b)=f(c) 求映射f:A→B的个数
设集合A={a,b,c}B={-1,0,1},映射f:A→B满足f(a)-f(b)=f(c),求映射f:A→B的个数
设集合A={a,b,c},B={-1,1,0},映射f:A→B,满足f(a)+f(b)=f(c) 求映射f:A→B的个数
已知集合M={a,b,c},N={-1,0,1},从M到N的映射f满足f(a)-f(b)=f(c),那么映射f的个数有几