设α,β是方程4X的平方 - 4mx+m+2=0的两个实根,m为何值时,α的平方+β的平方有最小值?并求出该最小值
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/17 22:51:29
设α,β是方程4X的平方 - 4mx+m+2=0的两个实根,m为何值时,α的平方+β的平方有最小值?并求出该最小值
由根与系数关系α+β=m,αβ=(m+2)/4
α^2+β^2=(α+β)^2-2αβ=m^2-(m+2)/2=m^2-m/2-1=(m-1/4)^2-17/16
所以m=-1/4时,α^2+β^2有最小值-17/16
α,β是方程4x的平方-4mx+m+2=0的两个实数根
⊿=16m²-4*4(m+2)≥0,m≥2,m≤-1
由韦达定理:α+β=m,αβ=(m+2)/4
α^2+β^2=(α+β)^2-2αβ=m^2-(m+2)/2=m^2-m/2-1=(m-1/4)^2-17/16
对称轴m=1/4,所以当m=-1时,
α^2+β^2有最小值为 1/2
,楼上答案是错的!
α^2+β^2=(α+β)^2-2αβ=m^2-(m+2)/2=m^2-m/2-1=(m-1/4)^2-17/16
所以m=-1/4时,α^2+β^2有最小值-17/16
α,β是方程4x的平方-4mx+m+2=0的两个实数根
⊿=16m²-4*4(m+2)≥0,m≥2,m≤-1
由韦达定理:α+β=m,αβ=(m+2)/4
α^2+β^2=(α+β)^2-2αβ=m^2-(m+2)/2=m^2-m/2-1=(m-1/4)^2-17/16
对称轴m=1/4,所以当m=-1时,
α^2+β^2有最小值为 1/2
,楼上答案是错的!
设a,b是方程4x的平方减4mx加m加2等于0的两个实根,当m为何值时,a的平方加b的平方有最小值,并求最小值.
设a,b是方程4x的平方-4mx+m+2=0的两个实数根,当m为何值时,a平方+b平方有最小值,并求出这个最小值
已知α,β是方程4x平方-4mx+m+2=0的两个实数根.当m为何值时,α平方+β平方有最小值?求出这个最小值.
设α,β是方程4x2-4mx+m+2=0,(x∈R)的两个实根,当m为何值时,α2+β2有最小值?并求出这个最小值.
设a,b是方程4x^2-4mx+m_3=0的两个实根,当m为何值时,a^2+b^2有最小值,并求出最小值
已知α,β是方程4x平方-4mx+m+2=0的两个实数根,当m为何值时,(α-1)平方+(β-1)平方有最小值吗?请求出
设X1和X2试方程2x平方-4mx+2m平方+3m-2=0的两个实数根.当m为何值时,X1平方+x2平方有最小值?
1:设A、B是方程4x2-4mx+m+2=0(x不等于0)的两个实根,当m为何值时,A2+B2有最小值?求出这个最小值。
阿尔法和贝塔是方程4X平方减4MX+M+2=0,(X属于R)的两实根,当M为何值时阿尔法的平方加贝塔的平方有最小值?
设X1 X2是方程X平方-2mX+(m平方+2m+3)=0的两实根,则X1平方+X2平方的最小值
设a是方程4x^2-4mx+x+2=0的两个实根,试求m为何值时,x1^2+x2^2有最小值
设x1,x2是方程2x^2-4mx+2m^2+3m-2=0的两个实根,当m为何值时,x1^2+x2^2有最小值,并求这个