作业帮 > 数学 > 作业

若а,θ为锐角,且tanθ=(sinа-cosа)/(sinа+cosа),求证:sinа-cosа=√2sinθ

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/15 19:09:02
若а,θ为锐角,且tanθ=(sinа-cosа)/(sinа+cosа),求证:sinа-cosа=√2sinθ
若а,θ为锐角,且tanθ=(sinа-cosа)/(sinа+cosа),求证:sinа-cosа=√2sinθ
【解】由结果入手,两路夹击,
sinα-cosα=(2sinβ)^1/2
平方得:
(sinα-cosα)^2=2sinβ
1-sin2α=2sinβ———(1)
sin2α=1-2sinβ———(2)
tanβ=(sinα-cosα)/(sinα+cosα)
==> (tanβ)^2=(1-sin2α)/(1+sin2α)代入(1)(2)
==> (tanβ)^2=sinβ/(1-sinβ) 切化弦
==> sinβ/(cosβ)^2= 1/(1-sinβ)得到:
==>(sinβ)^2+(cosβ)^2=1 恒成立;
得证