如图,△ABC的两条高AD、BM相交于E,连EC,∠AEB=105°,∠BAD=45°
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 05:47:23
如图,△ABC的两条高AD、BM相交于E,连EC,∠AEB=105°,∠BAD=45°
(1)AB=2AM (2)BE=AC (3)AB-BE=CE (4)AM-CM=CE
八年级上册新观察P38最后一题
(1)AB=2AM (2)BE=AC (3)AB-BE=CE (4)AM-CM=CE
八年级上册新观察P38最后一题
(1)证明:∵BM为△ABM的高.
∴∠BMA=90°
又∵∠AEB=105°,∠BAD=45°
∴∠ABM=180°—105°—45°
=30°
∴AM=1/2AB
即AB=2AM
(2)∵∠AEB=105°,∠BAD=45°
∴∠ABE=30°
∵BM⊥AC
∴∠AMB=90°,
又 ∵∠AEB=105°
∴∠DAC=15°
∵∠BAD=∠ABM+∠CBM=45°
∴AD=BD
∴△BED≌△ACD(ASA)
∴BE=AC
(3)∵△BED≌△ACD(已证)
∴DE=CD,∠DEC=45°
又∠BED=180°-∠AEB=75°
则∠BEC=120°,∠CEM=60°
. 延长EM到N,使EN=CE,连接AN,CN.则⊿CEN为等边三角形,得CE=CN.
∴EM⊥AC
∴EM=NM,得AE=AN.(线段垂直平分线上的点到线段两个端点距离相等)
则∠ANE=∠AEN=180°-∠AEB=75°;∠BED=∠AEN=75°,∠EBD=15°.
∴∠ABN=∠ABD-∠EBD=30°; ∠BAN=180°-∠ABN-∠ANE=75°=∠ANE.
∴AB-BE=BN-BE=EN
=CE.
(4)∵△BED≌△ACD(已证)
∴BE=AC
又∵AB-BE=CE
∴AM+MC+CE=AB
AM-MC=AM-CE
即AM-CM=CE
加油↖(^ω^)↗哈~~~~
∴∠BMA=90°
又∵∠AEB=105°,∠BAD=45°
∴∠ABM=180°—105°—45°
=30°
∴AM=1/2AB
即AB=2AM
(2)∵∠AEB=105°,∠BAD=45°
∴∠ABE=30°
∵BM⊥AC
∴∠AMB=90°,
又 ∵∠AEB=105°
∴∠DAC=15°
∵∠BAD=∠ABM+∠CBM=45°
∴AD=BD
∴△BED≌△ACD(ASA)
∴BE=AC
(3)∵△BED≌△ACD(已证)
∴DE=CD,∠DEC=45°
又∠BED=180°-∠AEB=75°
则∠BEC=120°,∠CEM=60°
. 延长EM到N,使EN=CE,连接AN,CN.则⊿CEN为等边三角形,得CE=CN.
∴EM⊥AC
∴EM=NM,得AE=AN.(线段垂直平分线上的点到线段两个端点距离相等)
则∠ANE=∠AEN=180°-∠AEB=75°;∠BED=∠AEN=75°,∠EBD=15°.
∴∠ABN=∠ABD-∠EBD=30°; ∠BAN=180°-∠ABN-∠ANE=75°=∠ANE.
∴AB-BE=BN-BE=EN
=CE.
(4)∵△BED≌△ACD(已证)
∴BE=AC
又∵AB-BE=CE
∴AM+MC+CE=AB
AM-MC=AM-CE
即AM-CM=CE
加油↖(^ω^)↗哈~~~~
已知 如图在△abc中,∠C=90,∠BAC=40,AD,BF分别为∠CAB和∠ABC平分线,且相交于点E,求∠AEB的
已知如图梯形ABCD中,AD平行于BC,∠BAD=∠ABC=90°,M为CD的中点,试说明AM=BM
如图,已知△ABC中,D为BC的中点,AD=AC,ED⊥BC,交AB于E,EC与AD相交于点F
如图.在梯形ABCD中,AD‖BC.∠BAD = 90° .E是DC的中点.求证 ∠AEB=2∠CBE.有图.
已知:如图,梯形ABCD中,AD∥BC,角BAD=90°,E是DC的中点.求证:∠AEB=2∠CBE
如图,△ABC中,∠ACB=90°,AC=BC,AD是BC边上的中线,EC⊥AD于F,EB⊥BC交EC于E 连接GD求证
如图,在△ABC中,∠A=90°,AB=AC,M是AC边上的中点,AD⊥BM交BC于D,交BM于E.求证:∠AMB=∠D
已知如图,在△ABC中,∠BAC=90°,AB=AC,M是AC边的中点,AD⊥BM交BC于D,交BM于E,CF⊥AC,证
如图,平行四边形ABCD中,AC与BD相交于点E,∠AEB=45°,BD=2,将△ABC沿AC所在直线翻折到同一平面内,
已知如图,△ABC为等边三角形,D,E分别是BC、AC边上的一点,BD=EC,BE、AD相交于F,BG⊥AD ,求∠EB
如图,已知AD‖BC,∠ABC和∠BAD的平分线相交于点E,过E的直线分别交AD,BC于点D,C.求证:AB=AD=BC
如图,AB、CD相交于点O,AD、CB的延长线相交于点E,OA=OC,EA=EC.求证:∠A=∠C