作业帮 > 数学 > 作业

是否存在常数a,b,c,使等式3^2+5^2+...+(2n+1)^2=[n(4n^2+an+b)]/3,对于任意正整数

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 02:37:25
是否存在常数a,b,c,使等式3^2+5^2+...+(2n+1)^2=[n(4n^2+an+b)]/3,对于任意正整数n成立,并求出a和b的值
是否存在常数a,b,c,使等式3^2+5^2+...+(2n+1)^2=[n(4n^2+an+b)]/3,对于任意正整数
利用1^2+2^2+...+n^2=n(n+1)(2n+1)/6
2^2+4^2+..+(2n)^2
=4(1^2+2^2+...+n^2)
=2n(n+1)(2n+1)/3
3^2+5^2+...+(2n+1)^2
=1^2+2^2+...+(2n+1)^2
-1^2-[2^2+4^2+...+(2n)^2]
=(2n+1)(2n+2)(4n+3)/6-1-2n(n+1)(2n+1)/3
=n(4n^2+12n+11)/3
所以存在且仅有a=12,b=11,使得3^2+5^2+...+(2n+1)^2=[n(4n^2+an+b)]/3成立