作业帮 > 数学 > 作业

如图,△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC、BC相切于点E、F,与AB分别相

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/14 06:32:26
如图,△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC、BC相切于点E、F,与AB分别相交于点G、H,且EH的延长线与CB的延长线交于点D,则CD的长为(  )
A.
2
2
−1
2
a
如图,△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC、BC相切于点E、F,与AB分别相
∵△ABC是等腰直角三角形,AC=BC=a,以斜边AB上的点O为圆心的圆分别与AC、BC相切于点E、F,与AB分别相交于点G、H,且EH的延长线与CB的延长线交于点D
∴连接OE、OF,由切线的性质可得OE=OF=⊙O的半径,∠OEC=∠OFC=∠C=90°
∴OECF是正方形
∵由△ABC的面积可知
1
2×AC×BC=
1
2×AC×OE+
1
2×BC×OF
∴OE=OF=
1
2a=EC=CF,BF=BC-CF=0.5a,GH=2OE=a
∵由切割线定理可得BF2=BH•BG

1
4a2=BH(BH+a)
∴BH=
−1+
2
2a或BH=
−1−
2
2a(舍去)
∵OE∥DB,OE=OH
∴△OEH∽△BDH

OE
OH=
BD
BH
∴BH=BD,CD=BC+BD=a+
−1+
2
2a=
1+
2
2a.
故选B.
如图,在△ABC中,∠C=90°,AC+BC=8,点O是斜边AB上一点,以O为圆心的⊙O分别与AC,BC相切于点D,E. 如图,在△ABC中,∠C=90°,AC+BC=8,点O是斜边AB上一点,以O为圆心的⊙O分别与AC、BC相切于点D、E 如图,在△ABC中,∠C=90°,AC+BC=9,点O是斜边AB上一点,以O为圆心2为半径的圆分别与AC、BC相切于点D 已知Rt△ABC中,∠C=90°,O为斜边AB上的一点,以O为圆心的圆与边AC,BC分别相切于点E,F,若AC=1,BC 如图所示,已知Rt△ABC中,∠C=90°,O为斜边AB上一点,以O为圆心的圆与边AC、BC分别相切于点E、F,若AC= 如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F.若 如图,在△ABC中,∠C=90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F. 如图,在△ABC中,∠C= 90°,以AB上一点O为圆心,OA长为半径的圆与BC相切于点D,分别交AC、AB于点E、F. 在三角形ABC中,角C=90度,AC+BC=8,点O是斜边AB上一点,以O为圆心的圆O分别与AC、BC相切于D、E. 在△ABC中,AB=AC,O是AB上一点,以O为圆心的圆经过点A,交AB于点F,与BC相切于点E.点D为BC的中点,连结 如图,等腰Rt△ABC的直角边AB、AC分别与圆O相切于点E、D,AD=3,DC=5,直线FG与AC、BC分别交于点F、 如图 在rt△ABC中 AB=AC P是斜边BC上的重点 以点P为顶点的直角的两边分别于AB AC 交与点E F 连接E