高等代数(x^2+1)h(x)+(x-1)f(x)+(x+2)g(x)=0
高等代数多项式问题设f(x),g(x),h(x)在R[x]内,xf^2(x)+xg^2(x)=h^2(x),证明:f(x
高等代数问题,f=(x-a1)(x-a2)(x-a3)(x-a4)+1,其中a1
高等代数证明 f(x)=1+x+x²/2!+…+x∧n/n!,证f'(x)与x∧ n/n!互素
已知函数f(x)=log2((x-1)/(x+1)),g(x)=2ax+1-a,又h(x)=f(x)+g(x)讨论h(x
高等代数多项式如f(x)=x∧4-4x∧3+1与g(x)=x∧3-3x∧ 2+1的最大公因式为1,可用辗转相除法 法求除
f(x)=f(2-x),当x属于[0,1]时,f(x)=x^3,g(x)=|x*cosx|,问h(x)=g(x)-f(x
已知函数f(x)=x^3,g(x)=x + x^(1/2) .求函数h(x)=f(x)-g(x)的零点个数,说明理由
设f(x),g(x),h(x)都是多项式,若 (f(x),g(x))=1,证明(f(x)+g(x)h(x),g(x))=
已知f(x)=x+1 g(x)=2^x h(x)=-x+6,设函数F(x)=min{f(x),g(x),h(x)},则F
函数f(x)=loga(x+2),g(x)=loga(2-x),h(x)=f(x)+g(x),求方程h(x)=0的解
设函数f(x)=a/x+xlnx,g(x)=x^3- x^2-3,(1)讨论函数h(x)=f(x)/x 的单调性.
高等代数多项式f(x)=(x-x1)…(x-xn),怎么得到的f'(x)=∑(i= 1,n)f(x)/(x-xi)