在同一直角坐标系中,正比例函数的图像可以看做是将x轴所在的直线绕着原点O逆时针旋转α度角后的图形,若它与反比例函数y=根
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 10:14:41
在同一直角坐标系中,正比例函数的图像可以看做是将x轴所在的直线绕着原点O逆时针旋转α度角后的图形,若它与反比例函数y=根号3/x的图像分别交于第一、三象限的点B,D,已知A(-m,0),C(m,0)ABCD是平行四边形,
1、当∠α=30°时,且ABCD是矩形,求A、B、C、D各点的坐标.
2、观察猜想:能使四边形ABCD为矩形的α的值共有几个?
3、探究ABCD是否是菱形,若是写出B点坐标,若不是,说明理由.
有 初二 所学的 可以解吗~
1、当∠α=30°时,且ABCD是矩形,求A、B、C、D各点的坐标.
2、观察猜想:能使四边形ABCD为矩形的α的值共有几个?
3、探究ABCD是否是菱形,若是写出B点坐标,若不是,说明理由.
有 初二 所学的 可以解吗~
1.当角度α=30°,可推导出正比例函数的斜率为根号3/3,又因为正比例函数经过原点,可推导出正比例函数的解析式为y=(根号3/3)*x; 将此式与反比例函数y=根号3/x 联立,得出交点坐标为(根号3,1),(-根号3,-1); 再根据题目中给出的条件,ABCD是矩形,若设m为正数,则AO=BO=CO=DO=2;可推导出m=2; 则A,C 点的坐标不难推出了.
2、可以O为圆心,以m=2为半径画一个圆形,看此圆形与反比例函数有几个交点,若只有两个交点(第三象限一个,第四象限一个),则只有一个α值能使之成为矩形.具体可将反比例函数与圆形的解析式联系方程组,求解看解的个数便可得知.
3、若ABCD为菱形,则对角线AC与BD相互垂直平分,则可推导出BD与y轴重合,而这是不可能发生的,与假设矛盾,因此,ABCD不可能为菱形.
针对问题补充的回答:用初二的应该可以解的,弟2小题,由于反比例函数图象关于直线y=x对称,则60度角处还有一个交点.
再问: 第一问 可以用 初二所学 的 吗~ 如果不行 正比例函数的斜率 什么意思~
再答: 就是直线倾斜角度的正切值,也就是角度α的正切值,tan α
2、可以O为圆心,以m=2为半径画一个圆形,看此圆形与反比例函数有几个交点,若只有两个交点(第三象限一个,第四象限一个),则只有一个α值能使之成为矩形.具体可将反比例函数与圆形的解析式联系方程组,求解看解的个数便可得知.
3、若ABCD为菱形,则对角线AC与BD相互垂直平分,则可推导出BD与y轴重合,而这是不可能发生的,与假设矛盾,因此,ABCD不可能为菱形.
针对问题补充的回答:用初二的应该可以解的,弟2小题,由于反比例函数图象关于直线y=x对称,则60度角处还有一个交点.
再问: 第一问 可以用 初二所学 的 吗~ 如果不行 正比例函数的斜率 什么意思~
再答: 就是直线倾斜角度的正切值,也就是角度α的正切值,tan α
在同一直角坐标系中,正比例函数的图像可以看做是将x轴所在的直线绕着原点O逆时针旋转α度角后的图形,若它与反比例函数y=根
在同一直角坐标系中,正比例函数的图像是将X轴所在的直线绕着原点O逆时针转a度角后的图形,若它与反比例函
在同一直角坐标系中,正比例函数的图象可以看作是将x轴所在的直线绕着原点O顺时针旋转a度角后的图形,
在直角坐标系中,o是坐标原点,一次函数y=x+k-1的图像与反比例函数y=k/x的图象交于
在平面直角坐标系xoy中,直线y=x绕点O逆时针旋转90°得到直线l,直线l与反比例函数y=kx
在同一直角坐标系中,正比例函数y=k1x的图象与反比例函数y=k2/x的图像有公共点,则k1k2 -- 0
在平面直角坐标系x0y中,直线y=x绕点o逆时针旋转90度得到直线l,直线l与反比例y=x分之k的图像的一个交点为
在平面直角坐标系xoy中,直线y=-x绕点o顺时针旋转90°得到直线l,直线l与反比例函数y=k|x的图像的一个交点为
在平面直角坐标系xOy中,直线y= -x 绕点O顺时针旋转90° 得到直线l,直线l与反比例函数y=k/x的图像的一个交
在同一直角坐标系中 y=kx+6与反比例函数y=k/x的图像是?
已知正比例函数y=k1x的图像和反比例函数y=k2/x的图像在同一直角坐标系中没有交点,则
如图,在同一直角坐标系中,正比例函数y=kx+3与反比例函数y= k/x的图象位置可能是