高数 :f(x+y)=f(x)g(y)+f(y)g(x),f'(0)=g(0)=1,f(0)=g'(0)=0证明f(x)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 18:49:21
高数 :f(x+y)=f(x)g(y)+f(y)g(x),f'(0)=g(0)=1,f(0)=g'(0)=0证明f(x)在R上可导且f'(x)=g(x)
用导数的定义来证明
以下极限{Δx趋向于0}
f'(x)=lim[f(x+Δx)-f(x)]/Δx
= lim[f(x)g(Δx)+f(Δx)g(x)-f(x)]/Δx
= lim f(x){[g(Δx)-1]/Δx} + lim{g(x)[f(Δx)]/Δx}
=f(x) lim{[g(Δx)-g(0)]/(Δx-0)} + g(x) lim{[f(Δx)-f(0)]/(Δx-0)}
=f(x)g'(0)+g(x)f'(0)=g(x)
得证
以下极限{Δx趋向于0}
f'(x)=lim[f(x+Δx)-f(x)]/Δx
= lim[f(x)g(Δx)+f(Δx)g(x)-f(x)]/Δx
= lim f(x){[g(Δx)-1]/Δx} + lim{g(x)[f(Δx)]/Δx}
=f(x) lim{[g(Δx)-g(0)]/(Δx-0)} + g(x) lim{[f(Δx)-f(0)]/(Δx-0)}
=f(x)g'(0)+g(x)f'(0)=g(x)
得证
f(x-y)=f(x)g(y) - g(x)f(y) 且f(-2)=f(1)不等于0 ,则g(1)+g(-1)=?
已知函数f[x],g[x]同时满足:g[x-y]=g[x]g[y]+f[x]f[y];f[-1]=-1,f[0]=0,f
高数拐点问题设g(x)二阶连续可导且g(0)=0,g’(0)不等于0.f(x)=(1-cosx)g(x),证明曲线y=f
设a>0,且a不等于1,f(x)=a^x+a^-x,g(x)=a^x-a^-x,f(x)*f(y)=8,g(x)+g(y
证明设f:X→Y,g:Y→X,若对任意x属于X,必有g[f(x)]=x,则f是单射,g是满射
复合函数的求导中y=f[g(x)],y'=f'[g(x)]•g'(x)为什么是f'[g(x)]乘以g'(x)
高数求导问题设f(x)和g(x)是在R上定义的函数,且具有如下性质:(1)f(x+y)=f(x)g(y)+f(y)g(x
高数3题目一道设函数f(x)可导,且f'(x)≠0,函数x=φ(y) 是y=f(x)的反函数,且f(2)=3,g(x)=
当设x≥0时,f(x)=2;当x<0时,f(x)=1.又g(x)=3f(x-1)-f(x-2)/2(x >0),求y=g
已知函数y=g(x)与f(x)=loga(x+1)(0
设f(x),g(x)均可导,证明在f(x)的任意两个零点之间,必有f'(x)+g'(x)f(x)=0的实根
设f(x),g(x)均可导,证明在f(x)的任意两个零点之间,必有f'(x)+g'(x)f(x)=0