高数拐点问题设g(x)二阶连续可导且g(0)=0,g’(0)不等于0.f(x)=(1-cosx)g(x),证明曲线y=f
高数拐点问题设g(x)二阶连续可导且g(0)=0,g’(0)不等于0.f(x)=(1-cosx)g(x),证明曲线y=f
高数证明题!设f(x),g(x)在[a,b]连续且可导,g'(x)不等于0,证明存在ζ∈(a,b)
f(x-y)=f(x)g(y) - g(x)f(y) 且f(-2)=f(1)不等于0 ,则g(1)+g(-1)=?
高数曲线积分题设g′(x)连续,且g(1)=g(0)=0,计算:I=∫L[2xg(y)-y]dx+[x²g′(
设f(X)具有2阶连续导数,且f(a)=0,g(x)=f(x)/x-a,x不等于a,g(x)=f'(a),x=a,求g'
设f(x),g(x)都是(-∞,+∞)上的可导函数,且f'(x)=g(x),g'(x)=f(x),f(0)=1,g(0)
高数求导问题设f(x)和g(x)是在R上定义的函数,且具有如下性质:(1)f(x+y)=f(x)g(y)+f(y)g(x
已知f(x)与g(x)可导,且f(x)^2+g(x)^2不等于0,求y=[f(x)^2+g(x)^2]^(1/2)的导数
设a>0,且a不等于1,f(x)=a^x+a^-x,g(x)=a^x-a^-x,f(x)*f(y)=8,g(x)+g(y
证明如果两个可导函数f(x)和g(x),满足f(x)=0,g(0)=0,且f'(0)及g'(0)存在,g'(0)不等于0
设f(u)具有二阶连续导数,且g(x,y)=f(y/x)+yf(x/y),求x²(δ²g/δx&su
高数3题目一道设函数f(x)可导,且f'(x)≠0,函数x=φ(y) 是y=f(x)的反函数,且f(2)=3,g(x)=