高数曲线积分题设g′(x)连续,且g(1)=g(0)=0,计算:I=∫L[2xg(y)-y]dx+[x²g′(
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 16:59:32
高数曲线积分题
设g′(x)连续,且g(1)=g(0)=0,计算:
I=∫L[2xg(y)-y]dx+[x²g′(y)-y]dy
L为抛物线y=3x²-2x (0≤x≤1)的一段
设g′(x)连续,且g(1)=g(0)=0,计算:
I=∫L[2xg(y)-y]dx+[x²g′(y)-y]dy
L为抛物线y=3x²-2x (0≤x≤1)的一段
利用格林公式,因为格林公式要求一个封闭的区域,所以先补上:
L1:y=1,x从1到0;
L2:x=0,y从1到0;
使得变成一个正定向的区域,然后设在L上的曲线积分为S,在L1和L2上的曲线积分分别为S1和S2,根据格林公式:
S + S1 + S2 = ∫L+L1+L2[2xg(y)-y]dx+[x²g′(y)-y]dy
= 二重积分( [x²g′(y)-y]对x求导 - [2xg(y)-y]对y求导 )dxdy
= 二重积分( 2xg′(y) - [2xg('y)-1] )dxdy
= 二重积分(1) dxdy
= 积分[0,1] 积分[3x²-2x,1] (1) dydx
= 积分[0,1] (1-3x²+2x) dx
= 1
而在L1上,y=1,dy=0,所以:
S1 = 积分[1,0] (-1) dx = 1
在L2上,x=0,dx=0,所以:
S2 = 积分[1,0](-y)dy=1/2
综上,S = 1 - S1 -S2 = -1/2.
PS:类似问题,可以到我主页定向求助,可快速获得答案.
L1:y=1,x从1到0;
L2:x=0,y从1到0;
使得变成一个正定向的区域,然后设在L上的曲线积分为S,在L1和L2上的曲线积分分别为S1和S2,根据格林公式:
S + S1 + S2 = ∫L+L1+L2[2xg(y)-y]dx+[x²g′(y)-y]dy
= 二重积分( [x²g′(y)-y]对x求导 - [2xg(y)-y]对y求导 )dxdy
= 二重积分( 2xg′(y) - [2xg('y)-1] )dxdy
= 二重积分(1) dxdy
= 积分[0,1] 积分[3x²-2x,1] (1) dydx
= 积分[0,1] (1-3x²+2x) dx
= 1
而在L1上,y=1,dy=0,所以:
S1 = 积分[1,0] (-1) dx = 1
在L2上,x=0,dx=0,所以:
S2 = 积分[1,0](-y)dy=1/2
综上,S = 1 - S1 -S2 = -1/2.
PS:类似问题,可以到我主页定向求助,可快速获得答案.
高数曲线积分题设g′(x)连续,且g(1)=g(0)=0,计算:I=∫L[2xg(y)-y]dx+[x²g′(
高数拐点问题设g(x)二阶连续可导且g(0)=0,g’(0)不等于0.f(x)=(1-cosx)g(x),证明曲线y=f
设f(x)=xg(x),其中g(x)在x=0处连续,且g(0)=1,试用导数定义求f'(0).
定积分的证明设y=f(x)及y=g(x)在[a,b]上连续.证明: (∫f(x)g(x)dx)^2=0左端的被积函数展开
设f(x)=g[xg^2(x)],其中g(x)可导,计算f'(x).
【高数】定积分 设f(x)连续,f(0)=1,则曲线y=∫(上限x,下限0) f(x)dx 在(0
高数求导问题设f(x)和g(x)是在R上定义的函数,且具有如下性质:(1)f(x+y)=f(x)g(y)+f(y)g(x
f(x-y)=f(x)g(y) - g(x)f(y) 且f(-2)=f(1)不等于0 ,则g(1)+g(-1)=?
数学中关于定积分比如X(-(0,1) Y(-(0,1) ∫F(X)G(X)DX=∫F(X)G(Y)DX 积分区间都为0到
设函数f(x)=g(x)+x^2,曲线y=g(x)在点(1,g(1))处切线方程为y=2x+1,则曲线y=f(x)在点(
设随机变量(X,Y)服从G={(x,y)|0
设(X,Y)服从区域G={(x,y)/0