如图a,b,分别是x轴位于原点左,右两侧的点,点m(p,3)在第一象限直线ma交y于点c(0.2)直线bm交y轴于点d,
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/06 06:18:29
如图a,b,分别是x轴位于原点左,右两侧的点,点m(p,3)在第一象限直线ma交y于点c(0.2)直线bm交y轴于点d,S三角形aom
(1)求点a的坐标及p的值
(2)若s△dom,求bd的解析式
(1)求点a的坐标及p的值
(2)若s△dom,求bd的解析式
1)求S三角形COP
S三角形COP = 1/2 * OC * PF = 1/2 * 2 * 2 = 2
(2)求点A的坐标及P的值
可证明三角形CFP全等于三角形COA,于是有
PF/OA = FC/OC.代入PF=2和OC=2,于是有FC * OA = 4.(1式)
又因为S三角形AOP=6,根据三角形面积公式有S = 1/2 * AO * PE = 6,于是得到AO * PE = 12.(2式)
其中PE = OC + FC = 2 + FC,所以(2)式等于AO * (2 + FC) = 12.(3式)
通过(1)式和(3)式组成的方程组就解,可以得到AO = 4,FC = 1.
p = FC + OC = 1 + 2 = 3.
所以得到A点的坐标为(-4,0),P点坐标为(2,3),p值为3.
(3)若S三角形BOP=S三角形DOP,求直线BD的解析式
因为S三角形BOP=S三角形DOP,就有(1/2)*OB*PE = (1/2)*PF*OD,即
(1/2)*(OE+BE)*PE = (1/2)*PF*(OF+FD),将上面求得的值代入有
(1/2)*(2+BE)*3 = (1/2)*2*(3+FD)即 3BE = 2FD.
又因为:FD:DO = PF:OB 即 FD:(3+FD) = 2:(2+BE),可知BE=2.B坐标为(4,0)
将BE=2代入上式3BE=2FD,可得FD = 3.D坐标为(0,6)
因此可以得到直线BD的解析式为:
y = (-3/2)x + 6
S三角形COP = 1/2 * OC * PF = 1/2 * 2 * 2 = 2
(2)求点A的坐标及P的值
可证明三角形CFP全等于三角形COA,于是有
PF/OA = FC/OC.代入PF=2和OC=2,于是有FC * OA = 4.(1式)
又因为S三角形AOP=6,根据三角形面积公式有S = 1/2 * AO * PE = 6,于是得到AO * PE = 12.(2式)
其中PE = OC + FC = 2 + FC,所以(2)式等于AO * (2 + FC) = 12.(3式)
通过(1)式和(3)式组成的方程组就解,可以得到AO = 4,FC = 1.
p = FC + OC = 1 + 2 = 3.
所以得到A点的坐标为(-4,0),P点坐标为(2,3),p值为3.
(3)若S三角形BOP=S三角形DOP,求直线BD的解析式
因为S三角形BOP=S三角形DOP,就有(1/2)*OB*PE = (1/2)*PF*OD,即
(1/2)*(OE+BE)*PE = (1/2)*PF*(OF+FD),将上面求得的值代入有
(1/2)*(2+BE)*3 = (1/2)*2*(3+FD)即 3BE = 2FD.
又因为:FD:DO = PF:OB 即 FD:(3+FD) = 2:(2+BE),可知BE=2.B坐标为(4,0)
将BE=2代入上式3BE=2FD,可得FD = 3.D坐标为(0,6)
因此可以得到直线BD的解析式为:
y = (-3/2)x + 6
如图,A、B分别是x轴上位于原点左、右两侧的点,点M(2,P)在第一象限,直线MA交y轴于点C(0,2),直线MB交y轴
如图,A、B分别是x轴上位于原点左右两侧的点,点P(2,p)在第一象限,直线PA交y轴于点C(0,2),直线PB交y轴于
2.如图,A、B分别是x轴上位于原点左右两侧的点,点P(2,p)在第一象限,直线PA交y轴于点C(0,2),直线PB交y
如图所示,A、B分别是X轴上位于原点两侧的两点,点(2,P)在第一象限.直线中A交Y轴于点C(0,2).直线PB交Y
如图,在平面直角坐标系中,直线AB与Y轴和X轴分别交于点A、点B,与反比例函数y=m/x在第一象限的图像交于点C(1,6
如图,在平面直角坐标系中,直线AB与Y轴和X轴分别交于点A、点B,与反比例函数y=mx在第一象限的图象交于点c(1,6)
如图,直线y=1/2x+2分别交x,y轴于点a,c,p是该直线上第一象限内的一点,
如图,在平面直角坐标系中,直线AB与y轴和x轴分别交于点A,点B,与反比例函数y=m/x在第一象限的图像交与点C(1,6
如图,在平面直角坐标系中,直线AB与Y轴和X轴分别交于点A、点B,与反比例函数y=m/x在第一象限的图象交于点
如图,直线y=1/2x+2分别交轴于A、C,点p是直线与反比例函数在第一象限内的一个交点,pb⊥轴于b,且s△ABP=9
如图,点A的坐标是(-2,0),点B的坐标是(6,0),点C在第一象限内且△OBC为等边三角形,直线BC交y轴于点D,过
如图:已知在平面坐标系中,以第一象限点M为圆心做⊙M与x轴交于点A(3,0),交Y轴于点C,且AC恰好平分∠MCO,直线