作业帮 > 数学 > 作业

设向量OA=(3,-√3),向量OB=(cosθ,sinθ),其中0≤θ≤90° 问:为什么答案说∵0≤θ≤90°,∴∠

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/12 11:40:47
设向量OA=(3,-√3),向量OB=(cosθ,sinθ),其中0≤θ≤90° 问:为什么答案说∵0≤θ≤90°,∴∠AOB=θ+30°
设向量OA=(3,-√3),向量OB=(cosθ,sinθ),其中0≤θ≤90° 问:为什么答案说∵0≤θ≤90°,∴∠
OA*OB*cos(∠AOB)=3cosθ-√3sinθ
cos(∠AOB) =(3cosθ-√3sinθ)/(2√3)
=(√3cosθ-sinθ)/2
=cos(θ+30°)
∠AOB=2*k*圆周率±(θ+30°)
∵0≤θ≤90° 0