如图,直线y=-x+b(b>0)与双曲线y=(x>0)交于A、B两点,连接OA、OB,AM⊥y轴于M,BN⊥x
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 00:11:58
如图,直线y=-x+b(b>0)与双曲线y=(x>0)交于A、B两点,连接OA、OB,AM⊥y轴于M,BN⊥x
-x+b=k/x得出X值(用公式法解)一个为A的横坐标一个为B的横从标,把B的横坐标代入y=-x+b得B的纵坐标与A的横从标相等即MO=ON,因为三角形AMO与三角形BON面积相等,所以MA=BN,所以:△AOM≌△BON,由勾股定理可得OA=OB,把A,B坐标表示出来,AB用两点间的距离公式可算出AB=根号2乘以根号下B平方减4K,因为AB=根号2,所以根号下B平方减4K=1,ON-BN=根号下B平方减4K,所以ON-BN=1,最难的是第三个结论解法如下:
过O作OM垂直AB于点D ,可得三角形AOM与AOD面积相等,三角形ODB与OBN面积相等,所以三角形AOB面积为K
选D
过O作OM垂直AB于点D ,可得三角形AOM与AOD面积相等,三角形ODB与OBN面积相等,所以三角形AOB面积为K
选D
如图,直线y=-x+b(b>0)与双曲线y=k/x(x>0)交于A,B两点,连接OA,OB、AM⊥y轴于M,BN⊥x轴于
(2011•眉山)如图,直线y=-x+b(b>0)与双曲线y=kx(x>0)交于A、B两点,连接OA、OB,AM⊥y轴于
如图,直线y=-x+b与双曲线y=-1/x (x<0)交于点A,与x轴交于点B,则OA的平方-OB的平方=
如图:⊙M经过O点,并且与x轴、y轴分别交于A、B两点,线段OA,OB(OA>OB)的长是方程x 2 -17x+60=0
双曲线y=1/x与y=2/x在第一象限内的图像如图所示,做一条平行于y轴的直线分别交双曲线于A,B两点,连接OA,OB,
如图,在平面直角坐标系中,直线y=-0.5x+b(b>0)分别交x轴,y轴于A、B两点,以OA,OB为边作为矩形OACB
直线L:x-y+m=0 与圆C:X^2+Y^2-2X+4Y-4=0交于A,B两点,且OA⊥OB (O为坐标原点),求实数
如图,已知抛物线y=1/2x^2+mx+n(n≠0)与直线y=x交于A、B两点,与y轴交于点C,OA=OB,且AC‖x轴
直线3x+4y+m=0与园x^2+y^2-5y=0交于两点A、B且OA⊥OB(O为原点)求m的值
如图,直线y=-x+b与双曲线y=1x(x>0)交于A、B两点,与x轴、y轴分别交于E、F两点,AC⊥x轴于点C,BD⊥
设双曲线的顶点是椭圆x^2/3+y^2/4=1的焦点,该双曲线又与直线15x-3y+6=0交于A,B两点,且OA⊥OB
如图,已知抛物线y=1/2x平方+mx+n(n≠0)与直线y=x交与A,B两点,与y轴交于点C,OA=OB,BC∥x轴.