(2011•眉山)如图,直线y=-x+b(b>0)与双曲线y=kx(x>0)交于A、B两点,连接OA、OB,AM⊥y轴于
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/18 06:58:02
(2011•眉山)如图,直线y=-x+b(b>0)与双曲线y=
k |
x |
设A(x1,y1),B(x2,y2),代入y=
k
x中,得x1•y1=x2•y2=k,
联立
y=−x+b
y=
k
x,得x2-bx+k=0,
则x1•x2=k,又x1•y1=k,
∴x2=y1,
同理x2•y2=k,
可得x1=y2,
∴ON=OM,AM=BN,
∴①OA=OB,②△AOM≌△BON,正确;
③作OH⊥AB,垂足为H,
∵OA=OB,∠AOB=45°,
∵②△AOM≌△BON,正确;
∴∠MOA=∠BON=22.5°,
∠AOH=∠BOH=22.5°,
∴△OAM≌△OAH≌△OBH≌△OBN,
∴S△AOB=S△AOH+S△BOH=S△AOM+S△BON=
1
2k+
1
2k=k,正确;
④延长MA,NB交于G点,
∵NG=OM=ON=MG,BN=AM,
∴GB=GA,
∴△ABG为等腰直角三角形,
当AB=
2时,GA=GB=1,
∴ON-BN=GN-BN=GB=1,正确.
正确的结论有4个.
故选D.
k
x中,得x1•y1=x2•y2=k,
联立
y=−x+b
y=
k
x,得x2-bx+k=0,
则x1•x2=k,又x1•y1=k,
∴x2=y1,
同理x2•y2=k,
可得x1=y2,
∴ON=OM,AM=BN,
∴①OA=OB,②△AOM≌△BON,正确;
③作OH⊥AB,垂足为H,
∵OA=OB,∠AOB=45°,
∵②△AOM≌△BON,正确;
∴∠MOA=∠BON=22.5°,
∠AOH=∠BOH=22.5°,
∴△OAM≌△OAH≌△OBH≌△OBN,
∴S△AOB=S△AOH+S△BOH=S△AOM+S△BON=
1
2k+
1
2k=k,正确;
④延长MA,NB交于G点,
∵NG=OM=ON=MG,BN=AM,
∴GB=GA,
∴△ABG为等腰直角三角形,
当AB=
2时,GA=GB=1,
∴ON-BN=GN-BN=GB=1,正确.
正确的结论有4个.
故选D.
(2011•眉山)如图,直线y=-x+b(b>0)与双曲线y=kx(x>0)交于A、B两点,连接OA、OB,AM⊥y轴于
如图,直线y=-x+b(b>0)与双曲线y=k/x(x>0)交于A,B两点,连接OA,OB、AM⊥y轴于M,BN⊥x轴于
如图,直线y=-x+b与双曲线y=-1/x (x<0)交于点A,与x轴交于点B,则OA的平方-OB的平方=
如图,在平面直角坐标系中,直线y=-0.5x+b(b>0)分别交x轴,y轴于A、B两点,以OA,OB为边作为矩形OACB
如图,直线y=kx+b(b≠0)交坐标轴A、B两点,交双曲线y=2/x于点D,过D作两作标轴的垂线DC、DE,连接OD.
双曲线y=1/x与y=2/x在第一象限内的图像如图所示,做一条平行于y轴的直线分别交双曲线于A,B两点,连接OA,OB,
如图,直线y=x+b(b>0)与x轴负半轴、y轴正半轴分别交于A、B两点,正比例函数y=kx(k<0)的图象与直线AB交
这是作业)如图,在直角坐标平面内,双曲线y=4/x(x>0)与直线y=kx+b交于A、B
如图:⊙M经过O点,并且与x轴、y轴分别交于A、B两点,线段OA,OB(OA>OB)的长是方程x 2 -17x+60=0
已知直线y=kx+2交抛物线x∧2=2y于A,B两点,O为坐标原点,(1)求证OA⊥OB
已知与圆:x^2+y^2-2x-2y+1=0相切的直线l交x轴,y轴于A、B两点,且OA=a,OB=b(a>2,b>2)
一次函数y=kx+b的图像交X轴与点A(-3,0),交Y轴于B,且|OA|:|OB|=3:4.