用数学归纳法证明:1·2·3+2·3·4+3·4·5+.+n(n+1)(n+2)=1/4n(n+1)(n+2)(n+3)
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/06 11:01:44
用数学归纳法证明:1·2·3+2·3·4+3·4·5+.+n(n+1)(n+2)=1/4n(n+1)(n+2)(n+3)
证:
(1)n=1时,左式=1·2·3=6
右式=1/4·1·2·3·4=6
成立!
(2)假设n=k≥2(k∈N)时成立,即:
1·2·3+2·3·4+3·4·5+.+k(k+1)(k+2)=1/4·k(k+1)(k+2)(k+3)
则当n=k+1时
1·2·3+2·3·4+3·4·5+.+k(k+1)(k+2)+(k+1)(k+2)(k+3)
=(1/4)·k(k+1)(k+2)(k+3)+(k+1)(k+2)(k+3)
=(1/4)·(k+1)(k+2)(k+3)(k+4)
显然成立!
综上,等式对任意n∈N时均成立!
(1)n=1时,左式=1·2·3=6
右式=1/4·1·2·3·4=6
成立!
(2)假设n=k≥2(k∈N)时成立,即:
1·2·3+2·3·4+3·4·5+.+k(k+1)(k+2)=1/4·k(k+1)(k+2)(k+3)
则当n=k+1时
1·2·3+2·3·4+3·4·5+.+k(k+1)(k+2)+(k+1)(k+2)(k+3)
=(1/4)·k(k+1)(k+2)(k+3)+(k+1)(k+2)(k+3)
=(1/4)·(k+1)(k+2)(k+3)(k+4)
显然成立!
综上,等式对任意n∈N时均成立!
用数学归纳法证明“(n+1)(n+2)…(n+n)=2^n·1·3·5…(2n-1)(n∈N*)”时,从n=k到n=k+
用数学归纳法证明:1×2×3+2×3×4+…+n×(n+1)×(n+2)=n(n+1)(n+2)(n+3)4(n∈N
用数学归纳法证明 (n+1)(n+2)…(n+n)=2^n·1·3·……·(2n-1)(n∈N*),从假定当n=k时公式
用数学归纳法证明:-1+3-5+...+(-1)n*(2n-1)=(-1)n*n
用数学归纳法证明:1/1*2*3+1/2*3*4+...+1/N(N+1)(N+2)=N(N+3)/4(N+1)(N+2
用数学归纳法证明(2^n-1)/(2^n+1)>n/(n十1)(n≥3,n∈N+)
用数学归纳法证明等式1+2+3+…+(n+3)=(n+3)(n+4)2(n∈N
用数学归纳法证明3^2+5^2+.+(2n+1)^2=n/3()4n^+12n+11)
用数学归纳法证明1+4+7+...+(3n-2)=[n(3n-1)]/2
用数学归纳法证明恒等式:1+2+3+...+n^2 = (n^4+n^2)/2
用数学归纳法证明:(n+1)+(n+2)+…+(n+n)=n(3n+1)2
用数学归纳法证明 1/1*2+1/3*4+…+1/(2n-1)*2n=1/(n+1)+1/(n+2)+…+1/(n+n)