已知抛物线与x轴交于A(-1,0),B(2,0)并经过点M(0,1),求抛物线的解析式?
来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/11 01:31:16
已知抛物线与x轴交于A(-1,0),B(2,0)并经过点M(0,1),求抛物线的解析式?
已知抛物线与x轴交于A(-1,0),B(1,0)
并经过点M(0,1),求抛物线的解析式
一般式:y=ax2+bx+c
两根式:
y=a(x-x1)(x-x2)
顶点式:
y=a(x-h)2+k
设所求的二次函数为 y=a(x+1)(x-1)
∵点M( 0,1 )在抛物线上,
∴a(0+1)(0-1)=1
得 a=-1
∴所求的抛物线解析式为
y=-(x+1)(x-1)
即 y=-x2+1
已知二次函数图象与x轴的两个交点的坐标时,通常设两根式!
你该怎样设
1.二次函数y=ax2+bx+c的图象经过点A(-1,0),B(3,0)
和C(0,6),求这个二次函数解析式.
2.一条抛物线经过点(0,0),(12,0),最高点的纵坐标是
3,求这个二次函数解析式.
3.二次函数的图象的对称轴是直线x=2,并且经过点
(1,4) 和(5,0),求这个二次函数解析式.
4.有一个抛物线形的立交桥拱,这个桥拱的最大高度
为16m,跨度为40m.现把它的图形放在坐标系里
(如图所示),求抛物线的解析式.
你该怎样设
设抛物线的解析式为y=ax2+bx+c
设抛物线为y=a(x-20)2+16
设抛物线为y=ax(x-40 )
求二次函数解析式的一般方法:
已知图象上三点坐标或三对对应值,
通常选择一般式
已知图象的顶点坐标(或对称轴和最值)
通常选择顶点式
已知图象与x轴的两个交点的横坐标x1,x2,
通常选择两根式
确定二次函数的解析式时,应该根据条件的特点,恰当地选用一种函数表达式.
并经过点M(0,1),求抛物线的解析式
一般式:y=ax2+bx+c
两根式:
y=a(x-x1)(x-x2)
顶点式:
y=a(x-h)2+k
设所求的二次函数为 y=a(x+1)(x-1)
∵点M( 0,1 )在抛物线上,
∴a(0+1)(0-1)=1
得 a=-1
∴所求的抛物线解析式为
y=-(x+1)(x-1)
即 y=-x2+1
已知二次函数图象与x轴的两个交点的坐标时,通常设两根式!
你该怎样设
1.二次函数y=ax2+bx+c的图象经过点A(-1,0),B(3,0)
和C(0,6),求这个二次函数解析式.
2.一条抛物线经过点(0,0),(12,0),最高点的纵坐标是
3,求这个二次函数解析式.
3.二次函数的图象的对称轴是直线x=2,并且经过点
(1,4) 和(5,0),求这个二次函数解析式.
4.有一个抛物线形的立交桥拱,这个桥拱的最大高度
为16m,跨度为40m.现把它的图形放在坐标系里
(如图所示),求抛物线的解析式.
你该怎样设
设抛物线的解析式为y=ax2+bx+c
设抛物线为y=a(x-20)2+16
设抛物线为y=ax(x-40 )
求二次函数解析式的一般方法:
已知图象上三点坐标或三对对应值,
通常选择一般式
已知图象的顶点坐标(或对称轴和最值)
通常选择顶点式
已知图象与x轴的两个交点的横坐标x1,x2,
通常选择两根式
确定二次函数的解析式时,应该根据条件的特点,恰当地选用一种函数表达式.
已知抛物线与x轴交于A(-1,0),B(2,0)并经过点M(0,1),求抛物线的解析式,并画出该抛物线的图像
在平面直角坐标系中,已知抛物线经过点A(0,4)B(1,0)C(5,0)抛物线对称轴与X轴交于M.(1)求抛物线解析式
已知抛物线与x 轴交于 A1(,-0) ,(1,B0),并经过(M0,1),求抛物线的解析式,并画出该抛物线的图像.
如图,抛物线y=x2+bx+c经过坐标原点,并与x轴交于点A(2,0). (1)求此抛物线的解析式;
已知抛物线与x州交于A(-1,0)B(3,0)与Y轴交于点C(0,3) 求抛物线的解析式
抛物线y=x平方-2x+m与x轴交于A、B两点,与y轴交于C(0,-3)(1)求抛物线的解析(2)若在第四象限的抛物线上
8抛物线y= x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(-1,0).(1)求抛物线的解析式及顶点D的
如图,已知抛物线与x轴交于A(-1,0),B(3,0)两点,与y轴交于点C(0,3) (1)求抛物线的解析式
抛物线与X轴交点的横坐标分别是-1和4与Y轴交于点A(0,2)求该抛物线的解析式
已知抛物线与x轴交于A(-1,0)E(3,0)亮点,与y轴交于点B(0,3),(1)求抛物线解析式
已知抛物线y= (根号3/9)x^+bx+c经过点A(1,0)B(7,0)与y轴交于点D. (1)求抛物线的解析式
如图,已知抛物线与X轴交于点A(-2,0),B(4,0),与Y轴交于点C(0,8).(1)求抛物线的解析式及其顶点D的坐