作业帮 > 数学 > 作业

如图,AB为⊙O的直径,C为⊙O上一点,CD切⊙O于点C,且∠DAC=∠BAC.

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/20 02:10:59
如图,AB为⊙O的直径,C为⊙O上一点,CD切⊙O于点C,且∠DAC=∠BAC.

(1)试说明:AD⊥CD;
(2)若AD=4,AB=6,求AC.
如图,AB为⊙O的直径,C为⊙O上一点,CD切⊙O于点C,且∠DAC=∠BAC.
(1)证明:连接OC;
∵CD切⊙O于点C,
∴OC⊥CD,
∵OC=OA,
∴∠BAC=∠OCA,
∵∠DAC=∠BAC,
∴∠DAC=∠OCA,
∴OC∥AD,
∴AD⊥CD;
(2)连接BC,∵AB为⊙O的直径,
∴∠ACB=90°,
在△ADC与△ACB中,

∠ADC=∠ACB=90°
∠DAC=∠BAC,
∴△ADC∽△ACB,

AD
AC=
AC
AB,
即AC2=AD•AB,
∵AD=4,AB=6,
∴AC=
4×6=2
6.