作业帮 > 数学 > 作业

设a,b,c,d都是正整数,并且a^5=b^4,c^3=d^2,c-a=19,求a-b的值

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/10 20:26:43
设a,b,c,d都是正整数,并且a^5=b^4,c^3=d^2,c-a=19,求a-b的值
需要过程!好的加分!
设a,b,c,d都是正整数,并且a^5=b^4,c^3=d^2,c-a=19,求a-b的值
由a^5=b^4得:a=b^4/a^4=(b^2/a^2)^2;
由c^3=d^2得:c=d^2/c^2=(d/c)^2;
代入c-a=19得
(d/c)^2-(b^2/a^2)^2=19
(d/c+b^2/a^2)×(d/c-b^2/a^2)=19=19×1
很明显,前一个括号的值大于后一个括号的,所以必有
d/c+b^2/a^2=19
d/c-b^2/a^2=1
上面两式相加,整理得:d/c=10,即d=10c;
上面两式相减,整理得:b^2/a^2=9,即b^2=9a^2,解得b=3a.
因为d=10c,b=3a,a^5=b^4,c^3=d^2,
所以
c^3=d^2=(10c)^2=100c^2,解得c=100,从而d=10c=1000;
由c-a=19得a=c-19=100-19=81,从而b=3a=243.
a=81 所以 a-b=81-243=-162