作业帮 > 数学 > 作业

七年级下册因式分解要点,公式,

来源:学生作业帮 编辑:大师作文网作业帮 分类:数学作业 时间:2024/11/13 19:00:17
七年级下册因式分解要点,公式,
七年级下册因式分解要点,公式,
分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行.
分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号.
当多项式的项数较多时,可将多项式进行合理分组,达到顺利分解的目的.当然可能要综合其他分法,且分组方法也不一定唯一.
第4课 因式分解
〖知识点〗
因式分解定义,提取公因式、应用公式法、分组分解法、二次三项式的因式(十字相乘法、求根)、因式分解一般步骤.
〖大纲要求〗
理解因式分解的概念,掌握提取公因式法、公式法、分组分解法等因式分解方法,掌握利用二次方程求根公式分解二次二项式的方法,能把简单多项式分解因式.
〖考查重点与常见题型〗
考查因式分解能力,在中考试题中,因式分解出现的频率很高.重点考查的分式提取公因式、应用公式法、分组分解法及它们的综合运用.习题类型以填空题为多,也有选择题和解答题.
因式分解知识点
多项式的因式分解,就是把一个多项式化为几个整式的积.分解因式要进行到每一个因式都不能再分解为止.分解因式的常用方法有:
(1)提公因式法
如多项式
其中m叫做这个多项式各项的公因式, m既可以是一个单项式,也可以是一个多项式.
(2)运用公式法,即用
写出结果.
(3)十字相乘法
对于二次项系数为l的二次三项式 寻找满足ab=q,a+b=p的a,b,如有,则 对于一般的二次三项式 寻找满足
a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,则
(4)分组分解法:把各项适当分组,先使分解因式能分组进行,再使分解因式在各组之间进行.
分组时要用到添括号:括号前面是“+”号,括到括号里的各项都不变符号;括号前面是“-”号,括到括号里的各项都改变符号.
§2.2提公因式法
教学目的和要求: 经历探索多项式各项公因式的过程,并在具体问题中,能确定多项式各项的公因式;会用提公因式法把多项式分解因式(多项式中的字母指数仅限于正整数的情况);进一步了解分解因式的意义,加强学生的直觉思维并渗透化归的思想方法.
教学重点和难点:
重点:是让学生理解提公因式的意义与原理.
难点:能确定多项式各项的公因式
关键:是让学生理解提公因式的意义与原理.
2. (1)多项式ab+bc各项都含有相同的因式吗?多项式3x2+x呢?多项式mb2+nb呢?
(2)将上面的多项式分别写成几个因式的乘积,说明你的理由,并与同位交流.
答案:(1)多项式ab+bc各项都含有相同的因式b,多项式3x2+x各项都含有相同的公因式x,多项mb2+nb各项都含有相同的公因式b.
2.3运用公式法
教学目的和要求: 经历通过整式乘法的平方差公式、完全平方公式逆向得出用公式法分解因式的方法的过程,发展学生的逆向思维和推理能力;运用公式法(直接用公式不超过两次)分解因式(指数是正整数)
教学重点和难点:
重点:发展学生的逆向思维和推理能力
难点:能够理解、归纳因式分解变形的特点,同时也可以充分感受到这种互逆变形的过程和数学知识的整体性.
因式分解的方法
  因式分解没有普遍的方法,初中数学教材中主要介绍了提公因式法、公式法.而在竞赛上,又有拆项和添项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,轮换对称法,剩余定理法等.
[编辑本段]基本方法
  ⑴提公因式法
  各项都含有的公共的因式叫做这个多项式各项的公因式.
  如果一个多项式的各项有公因式,可以把这个公因式提出来,从而将多项式化成两个因式乘积的形式,这种分解因式的方法叫做提公因式法.
  具体方法:当各项系数都是整数时,公因式的系数应取各项系数的最大公约数;字母取各项的相同的字母,而且各字母的指数取次数最低的;取相同的多项式,多项式的次数取最低的.
  如果多项式的第一项是负的,一般要提出“-”号,使括号内的第一项的系数成为正数.提出“-”号时,多项式的各项都要变号.
  例如:-am+bm+cm=-m(a-b-c);
  a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b).
  注意:把2a^2+1/2变成2(a^2+1/4)不叫提公因式
  ⑵公式法
  如果把乘法公式反过来,就可以把某些多项式分解因式,这种方法叫公式法.
  平方差公式:a^2-b^2=(a+b)(a-b);
  完全平方公式:a^2±2ab+b^2=(a±b)^2;
  注意:能运用完全平方公式分解因式的多项式必须是三项式,其中有两项能写成两个数(或式)的平方和的形式,另一项是这两个数(或式)的积的2倍.
  立方和公式:a^3+b^3=(a+b)(a^2-ab+b^2);
  立方差公式:a^3-b^3=(a-b)(a^2+ab+b^2);
  完全立方公式:a^3±3a^2b+3ab^2±b^3=(a±b)^3.
1.因式分解abc+ab-4a=a(bc+b-4)
2.因式分解3a3b2c-6a2b2c2+9ab2c3=3ab^2 c(a^2-2ac+3c^2)
3.因式分解xy+6-2x-3y=(x-3)(y-2)
4.因式分解x2(x-y)+y2(y-x)=(x+y)(x-y)^2
5.因式分解2x2-(a-2b)x-ab=(2x-a)(x+b)
6.因式分解a4-9a2b2=a^2(a+3b)(a-3b)
7.若已知x3+3x2-4含有x-1的因式,试分解x3+3x2-4=(x-1)(x+2)^2
8.因式分解ab(x2-y2)+xy(a2-b2)=(ay+bx)(ax-by)
9.因式分解(x+y)(a-b-c)+(x-y)(b+c-a)=2y(a-b-c)
10.因式分解a2-a-b2-b=(a+b)(a-b-1)
11.因式分解(3a-b)2-4(3a-b)(a+3b)+4(a+3b)2=[3a-b-2(a+3b)]^2=(a-7b)^2
12.因式分解(a+3)2-6(a+3)=(a+3)(a-3)
13.因式分解(x+1)2(x+2)-(x+1)(x+2)2=-(x+1)(x+2)
14.16x2-81=(4x+9)(4x-9)
15.9x2-30x+25=(3x-5)^2
16.x2-7x-30=(x-10)(x+3)
17.3ax2-6ax=3ax(x-2)
18.x(x+2)-x=x(x+1)
19.x2-4x-ax+4a=(x-4)(x-a)
20.25x2-49=(5x-9)(5x+9)
21.36x2-60x+25=(6x-5)^2
22.4x2+12x+9=(2x+3)^2
23.x2-9x+18=(x-3)(x-6)
24.2x2-5x-3=(x-3)(2x+1)
25.12x2-50x+8=2(6x-1)(x-4)
26.3x2-6x=3x(x-2)
27.49x2-25=(7x+5)(7x-5)
28.6x2-13x+5=(2x-1)(3x-5)
29.x2+2-3x=(x-1)(x-2)
30.12x2-23x-24=(3x-8)(4x+3)
31.(x+6)(x-6)-(x-6)=(x-6)(x+5)
32.3(x+2)(x-5)-(x+2)(x-3)=2(x-6)(x+2)
33.9x2+42x+49=(3x+7)^2 .
34..因式分解4x2+4xy+y2-4x-2y-3=(2x+y-3)(2x+y+1)
35.因式分解x2-25=(x+5)(x-5)
36.因式分解x2-20x+100=(x-10)^2
37.因式分解x2+4x+3=(x+1)(x+3)
38.因式分解4x2-12x+5=(2x-1)(2x-5)
39.因式分解下列各式:
40.因式分解(x+2)(x-3)+(x+2)(x+4)=(x+2)(2x-1)
41.因式分解2ax2-3x+2ax-3= (x+1)(2ax-3)
42.因式分解9x2-66x+121=(3x-11)^2
43.因式分解8-2x2=2(2+x)(2-x)
44.因式分解x2-x+14 =整数内无法分解
45.因式分解9x2-30x+25=(3x-5)^2
46.因式分解-20x2+9x+20=(-4x+5)(5x+4)
47.因式分解12x2-29x+15=(4x-3)(3x-5)
48.因式分解36x2+39x+9=3(3x+1)(4x+3)
49.因式分解21x2-31x-22=(21x+11)(x-2)
50.因式分解9x4-35x2-4=(9x^2+1)(x+2)(x-2)
51.因式分解(2x+1)(x+1)+(2x+1)(x-3)=2(x-1)(2x+1)
52.因式分解2ax2-3x+2ax-3=(x+1)(2ax-3)
53.因式分解x(y+2)-x-y-1=(x-1)(y+1)
54.因式分解(x2-3x)+(x-3)2=(x-3)(2x-3)
55.因式分解9x2-66x+121=(3x-11)^2
56.因式分解8-2x2=2(2-x)(2+x)
57.因式分解x4-1=(x-1)(x+1)(x^2+1)
58.因式分解x2+4x-xy-2y+4=(x+2)(x-y+2)
59.因式分解4x2-12x+5=(2x-1)(2x-5)
60.因式分解21x2-31x-22=(21x+11)(x-2)